A modular algorithm to compute the generalized Hermite normal form for Z[x]-lattices
In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken int...
Uloženo v:
| Vydáno v: | Journal of symbolic computation Ročník 81; s. 97 - 118 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.07.2017
|
| Témata: | |
| ISSN: | 0747-7171, 1095-855X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, a modular algorithm is given to compute the generalized Hermite normal form of matrices over Z[x], or equivalently, the reduced Gröbner basis of Z[x]-modules in Z[x]n. The main advantage of the algorithm is that the special structure of the Gröbner basis of ideals in Z[x] is taken into consideration. The algorithm is deterministic and seems to be the most efficient available algorithm for inputs with relatively low degrees. |
|---|---|
| ISSN: | 0747-7171 1095-855X |
| DOI: | 10.1016/j.jsc.2016.12.005 |