A variant of the united multi-operator evolutionary algorithms using sequential quadratic programming and improved SHADE-cnEpSin

United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the covariance matrix adaption evolution strategy (CMA-ES). UMOEAs-II, an improved version of UMOEAs, uses three differential evolution variants...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 622; s. 652 - 681
Hlavní autori: Hong, Libin, Guo, Youjian, Liu, Fuchang, Wang, Ben
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.04.2023
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the covariance matrix adaption evolution strategy (CMA-ES). UMOEAs-II, an improved version of UMOEAs, uses three differential evolution variants as multi-operator differential evolution (MODE), and CMA-ES. In this study, we further reform UMOEAs-II using an improved SHADE-cnEpSin that employs a novel adaptive strategy of scaling factor F, a crossover rate cri,j updating mechanism which can calculate crossover rate for the ith individual with a particular jth component, an improved rank-based selective pressure based mutation strategy, and nonlinear population size reduction along with sequential quadratic programming method. The effectiveness of the improved rank-based selective pressure based mutation strategy, nonlinear population size reduction, and sequential quadratic programming are evident from the individual validations. The novel framework, enhanced the exploration and exploitation abilities, is named UMOEAs-III and is evaluated using the CEC2017 benchmark functions. The experiments are tested on 10, 30, 50, and 100 dimensions. The experimental results demonstrate the outstanding performance of UMOEAs-III in both low and high-dimensional tests compared to the state-of-the-art DE-based variants and hybrid algorithms.
AbstractList United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the covariance matrix adaption evolution strategy (CMA-ES). UMOEAs-II, an improved version of UMOEAs, uses three differential evolution variants as multi-operator differential evolution (MODE), and CMA-ES. In this study, we further reform UMOEAs-II using an improved SHADE-cnEpSin that employs a novel adaptive strategy of scaling factor F, a crossover rate cri,j updating mechanism which can calculate crossover rate for the ith individual with a particular jth component, an improved rank-based selective pressure based mutation strategy, and nonlinear population size reduction along with sequential quadratic programming method. The effectiveness of the improved rank-based selective pressure based mutation strategy, nonlinear population size reduction, and sequential quadratic programming are evident from the individual validations. The novel framework, enhanced the exploration and exploitation abilities, is named UMOEAs-III and is evaluated using the CEC2017 benchmark functions. The experiments are tested on 10, 30, 50, and 100 dimensions. The experimental results demonstrate the outstanding performance of UMOEAs-III in both low and high-dimensional tests compared to the state-of-the-art DE-based variants and hybrid algorithms.
Author Liu, Fuchang
Wang, Ben
Guo, Youjian
Hong, Libin
Author_xml – sequence: 1
  givenname: Libin
  surname: Hong
  fullname: Hong, Libin
  email: libin.hong@hznu.edu.cn
– sequence: 2
  givenname: Youjian
  surname: Guo
  fullname: Guo, Youjian
– sequence: 3
  givenname: Fuchang
  surname: Liu
  fullname: Liu, Fuchang
– sequence: 4
  givenname: Ben
  surname: Wang
  fullname: Wang, Ben
BookMark eNp9kMFqGzEQhkVJoU6aB8hNL7BbjWyvdunJpG4TCOSQ9izG0qwzZldyJK2htz561ySnHHIa-Jnvh_-7FBchBhLiBlQNCppvh5pDrrXSugaoYQmfxAJao6tGd3AhFkppVSm9Xn8RlzkflFIr0zQL8W8jT5gYQ5Gxl-WZ5BS4kJfjNBSu4pESlpgkneIwFY4B01-Jwz4mLs9jllPmsJeZXiYKhXGQLxP6GWEnjynuE47j-QGDlzzOyWmufrrb_NhWLmyPTxy-is89Dpmu3-6V-PNz-_v2rnp4_HV_u3monO5MqfxSoVm5BqHvu51Gj03feb-izjnYGdIOTKt81_bU7qAza9LLdtdh56gBg2p5Jcxrr0sx50S9dVzwvKgk5MGCsmeR9mBnkfYs0gLYWeRMwjvymHicPXzIfH9laJ50Yko2O6bgyHMiV6yP_AH9Hxh5kgM
CitedBy_id crossref_primary_10_1016_j_eswa_2025_126403
crossref_primary_10_1016_j_autcon_2024_105891
crossref_primary_10_1016_j_swevo_2025_102154
crossref_primary_10_1016_j_asoc_2025_113282
crossref_primary_10_1016_j_energy_2024_134100
crossref_primary_10_1016_j_ins_2023_120077
crossref_primary_10_1016_j_neucom_2023_126899
crossref_primary_10_1016_j_renene_2024_120074
crossref_primary_10_1038_s41598_024_72279_1
crossref_primary_10_1007_s42235_024_00505_7
crossref_primary_10_1016_j_swevo_2023_101452
crossref_primary_10_1007_s10462_024_11053_1
crossref_primary_10_1016_j_engappai_2025_111117
crossref_primary_10_1016_j_ins_2024_120524
crossref_primary_10_1016_j_ins_2024_120548
Cites_doi 10.1109/TEVC.2009.2014613
10.1109/CEC.2016.7744163
10.1137/S0036144502414942
10.1016/j.asoc.2021.107678
10.1109/TEVC.2019.2890858
10.1186/s41074-019-0053-3
10.1109/TEVC.2006.872133
10.1109/CEC45853.2021.9504959
10.1007/BF02579150
10.1016/j.energy.2019.116778
10.1016/j.asoc.2020.106609
10.1023/A:1008202821328
10.1017/S0962492900002518
10.1007/978-3-642-29353-5_18
10.1109/CEC.2014.6900380
10.1109/ICGTSPICC.2016.7955308
10.1109/CEC45853.2021.9504792
10.1016/j.ins.2020.11.023
10.1109/ACCESS.2022.3185068
10.1109/CEC.2014.6900308
10.1109/CEC.2016.7744164
10.1145/1569901.1570014
10.1007/978-0-387-40065-5_18
10.1007/978-3-319-13356-0_2
10.1109/CEC.2017.7969524
10.1016/j.neucom.2021.08.118
10.1109/CEC.2017.7969336
10.1016/j.cor.2015.09.006
10.1109/CEC.2013.6557555
10.4236/jmf.2022.123029
10.1016/j.ins.2020.11.055
10.1007/s10489-018-1153-y
10.1016/j.neucom.2020.09.007
10.1109/TEVC.2008.927706
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2022.11.131
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 681
ExternalDocumentID 10_1016_j_ins_2022_11_131
S0020025522014402
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-d30a74c6a1ff9b2ada6f9dd4e9cc1b7e2c1780d98fe8b1975e238b9a9ce617a03
ISICitedReferencesCount 16
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000900836600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Sat Nov 29 07:27:02 EST 2025
Tue Nov 18 22:11:33 EST 2025
Fri Feb 23 02:38:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Differential evolution
SHADE-cnEpSin
United multi-operator evolutionary algorithms
Sequential quadratic programming
CMA-ES
Nonlinear population size reduction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-d30a74c6a1ff9b2ada6f9dd4e9cc1b7e2c1780d98fe8b1975e238b9a9ce617a03
PageCount 30
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2022_11_131
crossref_primary_10_1016_j_ins_2022_11_131
elsevier_sciencedirect_doi_10_1016_j_ins_2022_11_131
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Hu, Wang, Peng, Zeng (b0020) 2020; 193
Elsayed, Sarker, Essam, Hamza (b0035) 2014
J.L.J. Laredo, C.M. Fernandes, J.J.M. Guervós, C. Gagné, Improving genetic algorithms performance via deterministic population shrinkage, in: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, 2009, p. 819–826.
Awad, Ali, Suganthan, Reynolds (b0065) 2016
Boggs, Tolle (b0120) 1995; 4
Li, Wang, Jiang, Li (b0195) 2021; 421
Mousavirad, Moghadam, Saadatmand, Chakrabortty, Schaefer, Oliva (b0100) 2022
Qin, Huang, Suganthan (b0160) 2009; 13
Qian, Chai, Xu, Zhang (b0180) 2018; 48
Wang, Li, Zhu, Meng (b0095) 2021; 552
Cui, Li, Lin, Chen, Lu (b0175) 2016; 67
Hu, Dong, Fu, Zhai (b0030) 2022; 12
Zhang, Sanderson (b0200) 2009; 13
Stanovov, Akhmedova, Semenkin (b0085) 2021
Awad, Ali, Suganthan, Liang, Qu (b0205) 2017
Tanabe, Fukunaga (b0055) 2014
Su, Vargas, Sakurai (b0015) 2019; 11
Brest, Greiner, Boskovic, Mernik, Zumer (b0155) 2006; 10
Zamuda, Brest (b0165) 2012
Mohamed, Hadi, Mohamed, Awad (b0150) 2020
P.A. Vikhar, Evolutionary algorithms: A critical review and its future prospects, in: 2016 International conference on global trends in signal processing, information computing and communication, IEEE, 2016, pp. 261–265.
Kumar, Misra, Singh (b0135) 2017
Ozkaya, Guvenc, Bingol (b0115) 2022; 10
Zhao, Zhao, Wang, Song (b0090) 2020; 96
Awad, Ali, Suganthan (b0070) 2017
Nocedal, Wright (b0125) 2006
Su, Vargas, Sakurai (b0010) 2019; 23
Elsayed, Hamza, Sarker (b0040) 2016
Karmarkar (b0140) 1984; 4
Stanovov, Akhmedova, Semenkin (b0075) 2018
Gill, Wong (b0130) 2012
Cui, Chang, Li, Kong, Tian, Wang, Huang, Yang, Wu, Li (b0025) 2021; 465
T.J. Choi, C.W. Ahn, An adaptive cauchy differential evolution algorithm with population size reduction and modified multiple mutation strategies, in: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Vol. 2, Springer International Publishing, 2015, pp. 13–26.
Tang, Peng, Dai, Wang, Zhao, Yang, Pu, Zuo (b0110) 2022
Tan, Li, Wang (b0185) 2021; 549
Tanabe, Fukunaga (b0050) 2013
Tan, Li (b0190) 2021; 111
Storn, Price (b0045) 1997; 11
Li, Han, Zhou, Tang, Zhao (b0105) 2022
S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B.A. Jalaian, Improving differential evolution through bayesian hyperparameter optimization, in: 2021 IEEE Congress on Evolutionary Computation, IEEE, 2021, pp. 832–840.
Forsgren, Gill, Wright (b0145) 2002; 44
Tanabe (10.1016/j.ins.2022.11.131_b0055) 2014
10.1016/j.ins.2022.11.131_b0005
Elsayed (10.1016/j.ins.2022.11.131_b0040) 2016
Su (10.1016/j.ins.2022.11.131_b0010) 2019; 23
Cui (10.1016/j.ins.2022.11.131_b0025) 2021; 465
Stanovov (10.1016/j.ins.2022.11.131_b0075) 2018
Su (10.1016/j.ins.2022.11.131_b0015) 2019; 11
Mousavirad (10.1016/j.ins.2022.11.131_b0100) 2022
Zamuda (10.1016/j.ins.2022.11.131_b0165) 2012
Nocedal (10.1016/j.ins.2022.11.131_b0125) 2006
Qin (10.1016/j.ins.2022.11.131_b0160) 2009; 13
Li (10.1016/j.ins.2022.11.131_b0195) 2021; 421
Storn (10.1016/j.ins.2022.11.131_b0045) 1997; 11
10.1016/j.ins.2022.11.131_b0060
Karmarkar (10.1016/j.ins.2022.11.131_b0140) 1984; 4
10.1016/j.ins.2022.11.131_b0080
Ozkaya (10.1016/j.ins.2022.11.131_b0115) 2022; 10
Forsgren (10.1016/j.ins.2022.11.131_b0145) 2002; 44
Cui (10.1016/j.ins.2022.11.131_b0175) 2016; 67
Hu (10.1016/j.ins.2022.11.131_b0020) 2020; 193
Awad (10.1016/j.ins.2022.11.131_b0070) 2017
Li (10.1016/j.ins.2022.11.131_b0105) 2022
Stanovov (10.1016/j.ins.2022.11.131_b0085) 2021
Hu (10.1016/j.ins.2022.11.131_b0030) 2022; 12
Brest (10.1016/j.ins.2022.11.131_b0155) 2006; 10
Gill (10.1016/j.ins.2022.11.131_b0130) 2012
Awad (10.1016/j.ins.2022.11.131_b0065) 2016
10.1016/j.ins.2022.11.131_b0170
Awad (10.1016/j.ins.2022.11.131_b0205) 2017
Qian (10.1016/j.ins.2022.11.131_b0180) 2018; 48
Wang (10.1016/j.ins.2022.11.131_b0095) 2021; 552
Boggs (10.1016/j.ins.2022.11.131_b0120) 1995; 4
Zhang (10.1016/j.ins.2022.11.131_b0200) 2009; 13
Elsayed (10.1016/j.ins.2022.11.131_b0035) 2014
Zhao (10.1016/j.ins.2022.11.131_b0090) 2020; 96
Kumar (10.1016/j.ins.2022.11.131_b0135) 2017
Tanabe (10.1016/j.ins.2022.11.131_b0050) 2013
Tan (10.1016/j.ins.2022.11.131_b0190) 2021; 111
Tang (10.1016/j.ins.2022.11.131_b0110) 2022
Mohamed (10.1016/j.ins.2022.11.131_b0150) 2020
Tan (10.1016/j.ins.2022.11.131_b0185) 2021; 549
References_xml – volume: 421
  start-page: 285
  year: 2021
  end-page: 302
  ident: b0195
  article-title: Differential evolution algorithm with multi-population cooperation and multi-strategy integration
  publication-title: Neurocomputing
– start-page: 372
  year: 2017
  end-page: 379
  ident: b0070
  article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems
  publication-title: 2017 IEEE Congress on Evolutionary Computation
– volume: 23
  start-page: 828
  year: 2019
  end-page: 841
  ident: b0010
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2958
  year: 2016
  end-page: 2965
  ident: b0065
  article-title: An ensemble sinusoidal parameter adaptation incorporated with l-shade for solving cec2014 benchmark problems
  publication-title: 2016 IEEE Congress on Evolutionary Computation
– volume: 193
  year: 2020
  ident: b0020
  article-title: Effective energy consumption forecasting using enhanced bagged echo state network
  publication-title: Energy
– volume: 48
  start-page: 3612
  year: 2018
  end-page: 3629
  ident: b0180
  article-title: Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection
  publication-title: Appl. Intell.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 16
  ident: b0015
  article-title: Attacking convolutional neural network using differential evolution
  publication-title: IPSJ Trans. Comput. Vis. Appl.
– start-page: 154
  year: 2012
  end-page: 161
  ident: b0165
  article-title: Population reduction differential evolution with multiple mutation strategies in real world industry challenges
  publication-title: Swarm Evol. Comput.
– start-page: 1835
  year: 2017
  end-page: 1842
  ident: b0135
  article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase
  publication-title: 2017 IEEE Congress on Evolutionary Computation
– start-page: 1650
  year: 2014
  end-page: 1657
  ident: b0035
  article-title: Testing united multi-operator evolutionary algorithms on the cec2014 real-parameter numerical optimization
  publication-title: 2014 IEEE Congress on Evolutionary Computation
– start-page: 1
  year: 2022
  end-page: 18
  ident: b0110
  article-title: Enhancing the search ability of a hybrid lshade for global optimization of interplanetary trajectory design
  publication-title: Eng. Optim.
– volume: 111
  year: 2021
  ident: b0190
  article-title: Differential evolution with mixed mutation strategy based on deep reinforcement learning
  publication-title: Appl. Soft Comput.
– year: 2022
  ident: b0105
  article-title: A novel adaptive l-shade algorithm and its application in uav swarm resource configuration problem
  publication-title: Inf. Sci.
– start-page: 529
  year: 2006
  end-page: 562
  ident: b0125
  article-title: Sequential quadratic programming
  publication-title: Numer. Optim.
– start-page: 809
  year: 2021
  end-page: 816
  ident: b0085
  article-title: Nl-shade-rsp algorithm with adaptive archive and selective pressure for cec 2021 numerical optimization, in
  publication-title: 2021 IEEE Congress on Evolutionary Computation
– start-page: 147
  year: 2012
  end-page: 224
  ident: b0130
  article-title: Sequential quadratic programming methods
  publication-title: Mixed integer nonlinear programming
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b0155
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 465
  start-page: 38
  year: 2021
  end-page: 52
  ident: b0025
  article-title: Deattack: A differential evolution based attack method for the robustness evaluation of medical image segmentation
  publication-title: Neurocomputing
– volume: 4
  start-page: 373
  year: 1984
  end-page: 395
  ident: b0140
  article-title: A new polynomial-time algorithm for linear programming
  publication-title: Combinatorica
– volume: 44
  start-page: 525
  year: 2002
  end-page: 597
  ident: b0145
  article-title: Interior methods for nonlinear optimization
  publication-title: SIAM Rev.
– reference: P.A. Vikhar, Evolutionary algorithms: A critical review and its future prospects, in: 2016 International conference on global trends in signal processing, information computing and communication, IEEE, 2016, pp. 261–265.
– volume: 12
  start-page: 547
  year: 2022
  end-page: 565
  ident: b0030
  article-title: Fractional stochastic volatility pricing of european option based on self-adaptive differential evolution
  publication-title: J. Math. Finance
– start-page: 255
  year: 2022
  end-page: 268
  ident: b0100
  article-title: Rws-l-shade: An effective l-shade algorithm incorporation roulette wheel selection strategy for numerical optimisation
  publication-title: International Conference on the Applications of Evolutionary Computation
– reference: S. Biswas, D. Saha, S. De, A.D. Cobb, S. Das, B.A. Jalaian, Improving differential evolution through bayesian hyperparameter optimization, in: 2021 IEEE Congress on Evolutionary Computation, IEEE, 2021, pp. 832–840.
– volume: 67
  start-page: 155
  year: 2016
  end-page: 173
  ident: b0175
  article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
  publication-title: Comput. Oper. Res.
– start-page: 1658
  year: 2014
  end-page: 1665
  ident: b0055
  article-title: Improving the search performance of shade using linear population size reduction
  publication-title: 2014 IEEE Congress on Evolutionary Computation
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b0200
  article-title: Jade: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: b0160
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: T.J. Choi, C.W. Ahn, An adaptive cauchy differential evolution algorithm with population size reduction and modified multiple mutation strategies, in: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Vol. 2, Springer International Publishing, 2015, pp. 13–26.
– volume: 4
  start-page: 1
  year: 1995
  end-page: 51
  ident: b0120
  article-title: Sequential quadratic programming
  publication-title: Acta Numerica
– reference: J.L.J. Laredo, C.M. Fernandes, J.J.M. Guervós, C. Gagné, Improving genetic algorithms performance via deterministic population shrinkage, in: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, 2009, p. 819–826.
– volume: 549
  start-page: 142
  year: 2021
  end-page: 163
  ident: b0185
  article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis
  publication-title: Inf. Sci.
– start-page: 1
  year: 2018
  end-page: 8
  ident: b0075
  article-title: Lshade algorithm with rank-based selective pressure strategy for solving cec 2017 benchmark problems
  publication-title: 2018 IEEE Congress on Evolutionary Computation
– volume: 10
  start-page: 66770
  year: 2022
  end-page: 66796
  ident: b0115
  article-title: Fitness distance balance based lshade algorithm for energy hub economic dispatch problem
  publication-title: IEEE Access
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0045
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
– start-page: 2966
  year: 2016
  end-page: 2973
  ident: b0040
  article-title: Testing united multi-operator evolutionary algorithms-ii on single objective optimization problems
  publication-title: 2016 IEEE Congress on Evolutionary Computation
– volume: 96
  year: 2020
  ident: b0090
  article-title: A collaborative lshade algorithm with comprehensive learning mechanism
  publication-title: Appl. Soft Comput.
– volume: 552
  start-page: 201
  year: 2021
  end-page: 219
  ident: b0095
  article-title: L-shade-e: Ensemble of two differential evolution algorithms originating from l-shade
  publication-title: Inf. Sci.
– start-page: 1
  year: 2020
  end-page: 8
  ident: b0150
  article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on cec2020 benchmark problems, in
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– start-page: 71
  year: 2013
  end-page: 78
  ident: b0050
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: 2013 IEEE Congress on Evolutionary Computation
– year: 2017
  ident: b0205
  article-title: Problem definitions and evaluation criteria for the cec 2017 special session and competition on single objective real-parameter numerical optimization
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.ins.2022.11.131_b0200
  article-title: Jade: Adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– start-page: 2958
  year: 2016
  ident: 10.1016/j.ins.2022.11.131_b0065
  article-title: An ensemble sinusoidal parameter adaptation incorporated with l-shade for solving cec2014 benchmark problems
  publication-title: 2016 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2016.7744163
– volume: 44
  start-page: 525
  issue: 4
  year: 2002
  ident: 10.1016/j.ins.2022.11.131_b0145
  article-title: Interior methods for nonlinear optimization
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144502414942
– volume: 111
  year: 2021
  ident: 10.1016/j.ins.2022.11.131_b0190
  article-title: Differential evolution with mixed mutation strategy based on deep reinforcement learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107678
– volume: 23
  start-page: 828
  issue: 5
  year: 2019
  ident: 10.1016/j.ins.2022.11.131_b0010
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2890858
– start-page: 1
  year: 2022
  ident: 10.1016/j.ins.2022.11.131_b0110
  article-title: Enhancing the search ability of a hybrid lshade for global optimization of interplanetary trajectory design
  publication-title: Eng. Optim.
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.ins.2022.11.131_b0015
  article-title: Attacking convolutional neural network using differential evolution
  publication-title: IPSJ Trans. Comput. Vis. Appl.
  doi: 10.1186/s41074-019-0053-3
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.ins.2022.11.131_b0155
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– start-page: 809
  year: 2021
  ident: 10.1016/j.ins.2022.11.131_b0085
  article-title: Nl-shade-rsp algorithm with adaptive archive and selective pressure for cec 2021 numerical optimization, in
  publication-title: 2021 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC45853.2021.9504959
– start-page: 1
  year: 2020
  ident: 10.1016/j.ins.2022.11.131_b0150
  article-title: Evaluating the performance of adaptive gainingsharing knowledge based algorithm on cec2020 benchmark problems, in
  publication-title: 2020 IEEE Congress on Evolutionary Computation
– volume: 4
  start-page: 373
  issue: 5
  year: 1984
  ident: 10.1016/j.ins.2022.11.131_b0140
  article-title: A new polynomial-time algorithm for linear programming
  publication-title: Combinatorica
  doi: 10.1007/BF02579150
– volume: 193
  year: 2020
  ident: 10.1016/j.ins.2022.11.131_b0020
  article-title: Effective energy consumption forecasting using enhanced bagged echo state network
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116778
– volume: 96
  year: 2020
  ident: 10.1016/j.ins.2022.11.131_b0090
  article-title: A collaborative lshade algorithm with comprehensive learning mechanism
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106609
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.ins.2022.11.131_b0045
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 4
  start-page: 1
  year: 1995
  ident: 10.1016/j.ins.2022.11.131_b0120
  article-title: Sequential quadratic programming
  publication-title: Acta Numerica
  doi: 10.1017/S0962492900002518
– start-page: 154
  year: 2012
  ident: 10.1016/j.ins.2022.11.131_b0165
  article-title: Population reduction differential evolution with multiple mutation strategies in real world industry challenges
  publication-title: Swarm Evol. Comput.
  doi: 10.1007/978-3-642-29353-5_18
– start-page: 1658
  year: 2014
  ident: 10.1016/j.ins.2022.11.131_b0055
  article-title: Improving the search performance of shade using linear population size reduction
  publication-title: 2014 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2014.6900380
– ident: 10.1016/j.ins.2022.11.131_b0005
  doi: 10.1109/ICGTSPICC.2016.7955308
– start-page: 147
  year: 2012
  ident: 10.1016/j.ins.2022.11.131_b0130
  article-title: Sequential quadratic programming methods
– ident: 10.1016/j.ins.2022.11.131_b0080
  doi: 10.1109/CEC45853.2021.9504792
– volume: 549
  start-page: 142
  year: 2021
  ident: 10.1016/j.ins.2022.11.131_b0185
  article-title: Differential evolution with adaptive mutation strategy based on fitness landscape analysis
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.11.023
– year: 2022
  ident: 10.1016/j.ins.2022.11.131_b0105
  article-title: A novel adaptive l-shade algorithm and its application in uav swarm resource configuration problem
  publication-title: Inf. Sci.
– volume: 10
  start-page: 66770
  year: 2022
  ident: 10.1016/j.ins.2022.11.131_b0115
  article-title: Fitness distance balance based lshade algorithm for energy hub economic dispatch problem
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3185068
– start-page: 1650
  year: 2014
  ident: 10.1016/j.ins.2022.11.131_b0035
  article-title: Testing united multi-operator evolutionary algorithms on the cec2014 real-parameter numerical optimization
  publication-title: 2014 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2014.6900308
– start-page: 2966
  year: 2016
  ident: 10.1016/j.ins.2022.11.131_b0040
  article-title: Testing united multi-operator evolutionary algorithms-ii on single objective optimization problems
  publication-title: 2016 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2016.7744164
– ident: 10.1016/j.ins.2022.11.131_b0060
  doi: 10.1145/1569901.1570014
– start-page: 529
  year: 2006
  ident: 10.1016/j.ins.2022.11.131_b0125
  article-title: Sequential quadratic programming
  publication-title: Numer. Optim.
  doi: 10.1007/978-0-387-40065-5_18
– ident: 10.1016/j.ins.2022.11.131_b0170
  doi: 10.1007/978-3-319-13356-0_2
– start-page: 1835
  year: 2017
  ident: 10.1016/j.ins.2022.11.131_b0135
  article-title: Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase
  publication-title: 2017 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2017.7969524
– year: 2017
  ident: 10.1016/j.ins.2022.11.131_b0205
– volume: 465
  start-page: 38
  year: 2021
  ident: 10.1016/j.ins.2022.11.131_b0025
  article-title: Deattack: A differential evolution based attack method for the robustness evaluation of medical image segmentation
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.08.118
– start-page: 372
  year: 2017
  ident: 10.1016/j.ins.2022.11.131_b0070
  article-title: Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving cec2017 benchmark problems
  publication-title: 2017 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2017.7969336
– volume: 67
  start-page: 155
  year: 2016
  ident: 10.1016/j.ins.2022.11.131_b0175
  article-title: Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.09.006
– start-page: 71
  year: 2013
  ident: 10.1016/j.ins.2022.11.131_b0050
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: 2013 IEEE Congress on Evolutionary Computation
  doi: 10.1109/CEC.2013.6557555
– start-page: 1
  year: 2018
  ident: 10.1016/j.ins.2022.11.131_b0075
  article-title: Lshade algorithm with rank-based selective pressure strategy for solving cec 2017 benchmark problems
  publication-title: 2018 IEEE Congress on Evolutionary Computation
– volume: 12
  start-page: 547
  issue: 3
  year: 2022
  ident: 10.1016/j.ins.2022.11.131_b0030
  article-title: Fractional stochastic volatility pricing of european option based on self-adaptive differential evolution
  publication-title: J. Math. Finance
  doi: 10.4236/jmf.2022.123029
– volume: 552
  start-page: 201
  year: 2021
  ident: 10.1016/j.ins.2022.11.131_b0095
  article-title: L-shade-e: Ensemble of two differential evolution algorithms originating from l-shade
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.11.055
– volume: 48
  start-page: 3612
  issue: 10
  year: 2018
  ident: 10.1016/j.ins.2022.11.131_b0180
  article-title: Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1153-y
– volume: 421
  start-page: 285
  year: 2021
  ident: 10.1016/j.ins.2022.11.131_b0195
  article-title: Differential evolution algorithm with multi-population cooperation and multi-strategy integration
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.007
– start-page: 255
  year: 2022
  ident: 10.1016/j.ins.2022.11.131_b0100
  article-title: Rws-l-shade: An effective l-shade algorithm incorporation roulette wheel selection strategy for numerical optimisation
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.ins.2022.11.131_b0160
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
SSID ssj0004766
Score 2.4808676
Snippet United multi-operator evolutionary algorithms (UMOEAs) combine multi-operator differential evolution (DE), the multi-operator genetic algorithm (MOGA), and the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 652
SubjectTerms CMA-ES
Differential evolution
Nonlinear population size reduction
Sequential quadratic programming
SHADE-cnEpSin
United multi-operator evolutionary algorithms
Title A variant of the united multi-operator evolutionary algorithms using sequential quadratic programming and improved SHADE-cnEpSin
URI https://dx.doi.org/10.1016/j.ins.2022.11.131
Volume 622
WOSCitedRecordID wos000900836600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLWqDgtYIBhADDDIC8SCKihx0theFlQoaDRCYpC6ixzHgVSdtHSSapbzL_OjXL_SlJcAiU1URbUb9Zz4PnzvMULPykgIwrS-HQvjIMlJEuRgqQOpxclDlaY0Kc1hE_T0lM3n_MNgcO17YbZLWtfs8pKv_yvUcA_A1q2zfwF3NyncgM8AOlwBdrj-EfCT0RbiX2G3-LVb2Vq30pQOBqu1MhvrI7V1T6HL5sTy82pTNV_OL0atSR7YCutGp9O_tqLYGF1XV8t17vsaK5OQ0B7rDPAMZD1df3RC3gtfIN81R46cre18-JkrBj6p8qpj6NvWpG5hDVr0eHtStcbJbk2b8m4PwE7wynWzudwFiXslLyah5ptq9mo-tQcb6FDHmii7LjNKgpTYg738wp3ajma39KZWCddZ8dQeBPODgbC5igVENVqrnRAwGS8jZ4f2dbf1NraJuAjRUacWLD0gdMzZEB1M3k3n73ftt9Ruifvn9pvnpozwux_6ufvTc2nO7qDbLhbBE8uhu2ig6kN0q6dQeYiOXV8Lfo57WGJnEe6hqwl2bMOrEgPbsGUb3mcb7rMN79iGDdvwjm24YxvusQ0D27BnG95j23306c307PUscId6BJJw2gRFHAqayFREZclzIgqRlrwoEsWljHKqiIwoCwvOSsXyiNOxAqcy54JLBc62COMHaFivavUQ4TIlMBUvxsCLZBxLpso8D7kM89DI_h2h0P_XmXSK9_rglWXmSxsXGcCTaXggEs4AniP0ohuytnIvv_ty4gHM3Dtk_dAM2PbrYY_-bdhjdHP3Cj1Bw2bTqmN0Q26b6mLz1HHyGy36vgY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+variant+of+the+united+multi-operator+evolutionary+algorithms+using+sequential+quadratic+programming+and+improved+SHADE-cnEpSin&rft.jtitle=Information+sciences&rft.au=Hong%2C+Libin&rft.au=Guo%2C+Youjian&rft.au=Liu%2C+Fuchang&rft.au=Wang%2C+Ben&rft.date=2023-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=622&rft.spage=652&rft.epage=681&rft_id=info:doi/10.1016%2Fj.ins.2022.11.131&rft.externalDocID=S0020025522014402
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon