A structure-preserving QR factorization for centrosymmetric real matrices
We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solv...
Gespeichert in:
| Veröffentlicht in: | Linear algebra and its applications Jg. 484; S. 356 - 378 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.11.2015
|
| Schlagworte: | |
| ISSN: | 0024-3795, 1873-1856 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solving centrosymmetric linear systems of full rank. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/j.laa.2015.06.036 |