A structure-preserving QR factorization for centrosymmetric real matrices

We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 484; S. 356 - 378
1. Verfasser: Burnik, Konrad
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.11.2015
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solving centrosymmetric linear systems of full rank.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2015.06.036