A structure-preserving QR factorization for centrosymmetric real matrices

We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solv...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Linear algebra and its applications Ročník 484; s. 356 - 378
Hlavný autor: Burnik, Konrad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.11.2015
Predmet:
ISSN:0024-3795, 1873-1856
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solving centrosymmetric linear systems of full rank.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2015.06.036