A structure-preserving QR factorization for centrosymmetric real matrices
We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solv...
Uložené v:
| Vydané v: | Linear algebra and its applications Ročník 484; s. 356 - 378 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
01.11.2015
|
| Predmet: | |
| ISSN: | 0024-3795, 1873-1856 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We construct a QR factorization of a given centrosymmetric real matrix A into centrosymmetric real matrices Q and R. We describe in detail a Householder-type algorithm based on perplectic orthogonal block-reflectors to obtain such a factorization and demonstrate an application of this result to solving centrosymmetric linear systems of full rank. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/j.laa.2015.06.036 |