Jellyfish detection algorithm based on multi-gradient flow feature fusion

Jellyfish detection is a challenge in the field of underwater biological identification. Although early works have solved some of the problems of jellyfish detection, there are still shortcomings. Earlier jellyfish datasets were not as extensive, necessitating heavy reliance on data augmentation. Mo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Digital signal processing Ročník 152; s. 104580
Hlavní autori: Gao, Meijing, Wang, Kunda, Xie, Yunjia, Zhang, Bozhi, Yan, Yonghao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.09.2024
Predmet:
ISSN:1051-2004, 1095-4333
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Jellyfish detection is a challenge in the field of underwater biological identification. Although early works have solved some of the problems of jellyfish detection, there are still shortcomings. Earlier jellyfish datasets were not as extensive, necessitating heavy reliance on data augmentation. Moreover, the detection capability is limited, especially in scenarios involving jellyfish gatherings and occlusions. To overcome these limitations, we establish a high-quality dataset with more jellyfish species and propose a more robust real-time detection algorithm. Our algorithm primarily consists of a multi-gradient flow backbone and a feature fusion module GFPN. Additionally, we have designed a receptive field expansion module SPPFCSPC_G. The entire network employs the FReLU activation function, while the bounding box regression utilizes the WIOU loss function. Our methods demonstrate accuracy and run-time performance in comparison with the state-of-the-art yolo series algorithms. Results show that our algorithm achieves the highest Precision, Recall and mAP50, exceeding the baseline yolov5 by 1.1%, 4.1%, and 4.5%, and outperforming the latest yolov8 by 0.9%, 1.3%, and 2.5%. Importantly, our method effectively addresses aggregation, occlusion, and deformation issues commonly encountered in jellyfish detection.
ISSN:1051-2004
1095-4333
DOI:10.1016/j.dsp.2024.104580