Improvements to the computation of eigenvalues and eigenfunctions of two-dimensional Schrödinger equations by constant perturbation based algorithms

We present important improvements and additions to a modern technique developed by Ixaru to solve the time-dependent two-dimensional Schrödinger equation with homogeneous Dirichlet boundary conditions over a rectangular domain. The algorithm, first described in Ixaru (2010), is based on the so-calle...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational and applied mathematics Vol. 412; p. 114292
Main Authors: Baeyens, Toon, Van Daele, Marnix
Format: Journal Article
Language:English
Published: Elsevier B.V 01.10.2022
Subjects:
ISSN:0377-0427, 1879-1778
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We present important improvements and additions to a modern technique developed by Ixaru to solve the time-dependent two-dimensional Schrödinger equation with homogeneous Dirichlet boundary conditions over a rectangular domain. The algorithm, first described in Ixaru (2010), is based on the so-called Constant Perturbation technique. In this paper, we refine and extend the algorithm with important features. We focus in particular on new algorithms for the determination of the index of the eigenvalues, for the orthonormalization of eigenfunctions, for automatic step size selection and for the accurate computation of integrals. We provide the new developments with sufficient theoretical background and numerical experiments.
AbstractList We present important improvements and additions to a modern technique developed by Ixaru to solve the time-dependent two-dimensional Schrödinger equation with homogeneous Dirichlet boundary conditions over a rectangular domain. The algorithm, first described in Ixaru (2010), is based on the so-called Constant Perturbation technique. In this paper, we refine and extend the algorithm with important features. We focus in particular on new algorithms for the determination of the index of the eigenvalues, for the orthonormalization of eigenfunctions, for automatic step size selection and for the accurate computation of integrals. We provide the new developments with sufficient theoretical background and numerical experiments.
ArticleNumber 114292
Author Van Daele, Marnix
Baeyens, Toon
Author_xml – sequence: 1
  givenname: Toon
  orcidid: 0000-0002-2069-7824
  surname: Baeyens
  fullname: Baeyens, Toon
  email: Toon.Baeyens@UGent.be
– sequence: 2
  givenname: Marnix
  surname: Van Daele
  fullname: Van Daele, Marnix
BookMark eNp9kEtu2zAQhokiAeI8DpAdLyCXpB4U0VVhtE2AAF0kXRMjamjTkEiXpFzkIL1KL5CLRYay6sIrYoj_-wfzXZMLHzwScs_ZmjPefN6vDYxrwYRYc14JJT6RFW-lKriU7QVZsVLKglVCXpHrlPaMsUbxakX-Po6HGI44os-J5kDzDqkJ42HKkF3wNFiKbov-CMOEiYLvl9lO3pwC6ZTIf0LRu7kjzT8w0Gezi2__eue3GCn-nmBJdq9ztU8ZfKYHjHmK3bKkg4Q9hWEbosu7Md2SSwtDwruP94b8-v7tZfNQPP388bj5-lQYoWQuetbUdVu3pVVY1orLsgILtpOV6KxR0HJhWc0s61umVKtKhQ1YBTB76kRtyxsil14TQ0oRrTZuuTtHcIPmTJ_s6r2e7eqTXb3YnUn-H3mIboT4epb5sjA4n3R0GHUyDr3B3kU0WffBnaHfAZFmmg4
CitedBy_id crossref_primary_10_1016_j_camwa_2023_09_025
Cites_doi 10.1145/2839299
10.1016/j.cpc.2006.09.004
10.1007/BF01386087
10.1007/BF01206624
10.1006/jcph.1996.0140
10.1016/S0010-4655(98)00181-7
10.1145/1114268.1114273
10.1007/BF02142741
10.1016/j.cpc.2012.12.016
10.1016/j.cpc.2010.06.031
10.1016/j.apnum.2004.08.018
10.1016/S0010-4655(02)00459-9
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cam.2022.114292
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
ExternalDocumentID 10_1016_j_cam_2022_114292
S0377042722001212
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
29K
5VS
9DU
AAFWJ
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
EJD
FGOYB
G-2
HZ~
NHB
R2-
SEW
SSZ
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-d06558583f9e3591734afafb742bfc9a812f050f0d80998939e6af9aa202b25f3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000829826200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-0427
IngestDate Sat Nov 29 07:16:30 EST 2025
Tue Nov 18 22:23:33 EST 2025
Fri Feb 23 02:39:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Eigenvalues
Eigenfunctions
Constant Perturbations Methods
Schrödinger equation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-d06558583f9e3591734afafb742bfc9a812f050f0d80998939e6af9aa202b25f3
ORCID 0000-0002-2069-7824
ParticipantIDs crossref_citationtrail_10_1016_j_cam_2022_114292
crossref_primary_10_1016_j_cam_2022_114292
elsevier_sciencedirect_doi_10_1016_j_cam_2022_114292
PublicationCentury 2000
PublicationDate 2022-10-01
2022-10-00
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ixaru (b1) 2010; 181
Braun, Sofianos, Papageorgiou, Lagaris (b19) 1996; 126
Ixaru (b2) 1984
Marletta (b18) 1993; 4
Ixaru (b6) 2002; 147
Ixaru, De Meyer, Vanden Berghe (b3) 1999; 118
Van Daele, Vanden Berghe, Vande Vyver (b11) 2005; 53
Atkinson (b17) 1964
Courant, Hilbert (b15) 2008
Baeyens, Van Daele (b9) 2020
Titchmarsh (b10) 1962
Ledoux, Van Daele, Vanden Berghe (b4) 2005; 31
Piessens, de Doncker-Kapenga, Überhuber, Kahaner (b12) 1983
Ledoux, Van Daele (b7) 2013; 184
Lancaster (b13) 1964; 6
Ledoux, Van Daele, Vanden Berghe (b8) 2007; 176
Prüfer (b14) 1926; 95
Hale (b16) 2005
Ledoux, Van Daele, Vanden Berghe (b5) 2016; 42
Van Daele (10.1016/j.cam.2022.114292_b11) 2005; 53
Lancaster (10.1016/j.cam.2022.114292_b13) 1964; 6
Marletta (10.1016/j.cam.2022.114292_b18) 1993; 4
Braun (10.1016/j.cam.2022.114292_b19) 1996; 126
Ixaru (10.1016/j.cam.2022.114292_b6) 2002; 147
Titchmarsh (10.1016/j.cam.2022.114292_b10) 1962
Piessens (10.1016/j.cam.2022.114292_b12) 1983
Atkinson (10.1016/j.cam.2022.114292_b17) 1964
Hale (10.1016/j.cam.2022.114292_b16) 2005
Ixaru (10.1016/j.cam.2022.114292_b2) 1984
Ixaru (10.1016/j.cam.2022.114292_b1) 2010; 181
Ledoux (10.1016/j.cam.2022.114292_b4) 2005; 31
Prüfer (10.1016/j.cam.2022.114292_b14) 1926; 95
Ledoux (10.1016/j.cam.2022.114292_b8) 2007; 176
Ledoux (10.1016/j.cam.2022.114292_b7) 2013; 184
Courant (10.1016/j.cam.2022.114292_b15) 2008
Ixaru (10.1016/j.cam.2022.114292_b3) 1999; 118
Ledoux (10.1016/j.cam.2022.114292_b5) 2016; 42
Baeyens (10.1016/j.cam.2022.114292_b9) 2020
References_xml – year: 2020
  ident: b9
  article-title: The fast and accurate computation of eigenvalues and eigenfunctions of time-independent one-dimensional Schrödinger equations
  publication-title: Comput. Phys. Comm.
– volume: 126
  start-page: 315
  year: 1996
  end-page: 327
  ident: b19
  article-title: An efficient Chebyshev–lanczos method for obtaining eigensolutions of the Schrödinger equation on a grid
  publication-title: J. Comput. Phys.
– year: 1984
  ident: b2
  article-title: Numerical Methods for Differential Equations and Applications
– volume: 147
  start-page: 834
  year: 2002
  end-page: 852
  ident: b6
  article-title: LILIX—a package for the solution of the coupled channel Schrödinger equation. this program can be downloaded from the CPC program library under catalogue identifier:
  publication-title: Comput. Phys. Comm.
– volume: 31
  start-page: 532
  year: 2005
  end-page: 554
  ident: b4
  article-title: MATSLISE: a MATLAB package for the numerical solution of Sturm-Liouville and Schrödinger equations
  publication-title: ACM Trans. Math. Software
– volume: 53
  start-page: 509
  year: 2005
  end-page: 526
  ident: b11
  article-title: Exponentially fitted quadrature rules of Gauss type for oscillatory integrands
  publication-title: Appl. Numer. Math.
– year: 1962
  ident: b10
  article-title: Eigenfunction Expansions - Associated with Second-Order Differential Equations. Part I
– volume: 4
  start-page: 65
  year: 1993
  end-page: 99
  ident: b18
  article-title: Automatic solution of regular and singular vector Sturm-Liouville problems
  publication-title: Numer. Algorithms
– year: 1964
  ident: b17
  article-title: Discrete and Continuous Boundary Problems
– volume: 95
  start-page: 499
  year: 1926
  end-page: 518
  ident: b14
  article-title: Neue herleitung der Sturm-Liouvilleschen reihenentwicklung stetiger funktionen
  publication-title: Math. Ann.
– volume: 6
  start-page: 377
  year: 1964
  end-page: 387
  ident: b13
  article-title: On eigenvalues of matrices dependent on a parameter
  publication-title: Numer. Math.
– volume: 181
  start-page: 1738
  year: 2010
  end-page: 1742
  ident: b1
  article-title: New numerical method for the eigenvalue problem of the 2D Schrödinger equation
  publication-title: Comput. Phys. Comm.
– volume: 176
  start-page: 191
  year: 2007
  end-page: 199
  ident: b8
  article-title: A numerical procedure to solve the multichannel Schrödinger eigenvalue problem
  publication-title: Comput. Phys. Comm.
– volume: 184
  start-page: 1287
  year: 2013
  end-page: 1296
  ident: b7
  article-title: Automatic computation of quantum-mechanical bound states and wavefunctions
  publication-title: Comput. Phys. Comm.
– volume: 118
  start-page: 259
  year: 1999
  end-page: 277
  ident: b3
  article-title: SLCPM12 — a program for solving regular Sturm—Liouville problems
  publication-title: Comput. Phys. Comm.
– year: 2008
  ident: b15
  article-title: Methods of Mathematical Physics
– volume: 42
  start-page: 18
  year: 2016
  ident: b5
  article-title: MATSLISE 2.0 : A matlab toolbox for Sturm-Liouville computations
  publication-title: ACM Trans. Math. Softw.
– start-page: 95
  year: 2005
  end-page: 123
  ident: b16
  article-title: Eigenvalues and perturbed domains
  publication-title: 10 Mathematical Essays on Approximation in Analysis and Topology
– year: 1983
  ident: b12
  article-title: Quadpack: a subroutine package for automatic integration
  publication-title: Springer Series in Computational Mathematics
– year: 1962
  ident: 10.1016/j.cam.2022.114292_b10
– year: 2008
  ident: 10.1016/j.cam.2022.114292_b15
– start-page: 95
  year: 2005
  ident: 10.1016/j.cam.2022.114292_b16
  article-title: Eigenvalues and perturbed domains
– year: 1983
  ident: 10.1016/j.cam.2022.114292_b12
  article-title: Quadpack: a subroutine package for automatic integration
– year: 2020
  ident: 10.1016/j.cam.2022.114292_b9
  article-title: The fast and accurate computation of eigenvalues and eigenfunctions of time-independent one-dimensional Schrödinger equations
  publication-title: Comput. Phys. Comm.
– volume: 42
  start-page: 18
  issue: 4
  year: 2016
  ident: 10.1016/j.cam.2022.114292_b5
  article-title: MATSLISE 2.0 : A matlab toolbox for Sturm-Liouville computations
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/2839299
– volume: 176
  start-page: 191
  issue: 3
  year: 2007
  ident: 10.1016/j.cam.2022.114292_b8
  article-title: A numerical procedure to solve the multichannel Schrödinger eigenvalue problem
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2006.09.004
– volume: 6
  start-page: 377
  issue: 1
  year: 1964
  ident: 10.1016/j.cam.2022.114292_b13
  article-title: On eigenvalues of matrices dependent on a parameter
  publication-title: Numer. Math.
  doi: 10.1007/BF01386087
– volume: 95
  start-page: 499
  issue: 1
  year: 1926
  ident: 10.1016/j.cam.2022.114292_b14
  article-title: Neue herleitung der Sturm-Liouvilleschen reihenentwicklung stetiger funktionen
  publication-title: Math. Ann.
  doi: 10.1007/BF01206624
– volume: 126
  start-page: 315
  issue: 2
  year: 1996
  ident: 10.1016/j.cam.2022.114292_b19
  article-title: An efficient Chebyshev–lanczos method for obtaining eigensolutions of the Schrödinger equation on a grid
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.0140
– year: 1984
  ident: 10.1016/j.cam.2022.114292_b2
– year: 1964
  ident: 10.1016/j.cam.2022.114292_b17
– volume: 118
  start-page: 259
  issue: 2
  year: 1999
  ident: 10.1016/j.cam.2022.114292_b3
  article-title: SLCPM12 — a program for solving regular Sturm—Liouville problems
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(98)00181-7
– volume: 31
  start-page: 532
  issue: 4
  year: 2005
  ident: 10.1016/j.cam.2022.114292_b4
  article-title: MATSLISE: a MATLAB package for the numerical solution of Sturm-Liouville and Schrödinger equations
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1114268.1114273
– volume: 4
  start-page: 65
  issue: 1
  year: 1993
  ident: 10.1016/j.cam.2022.114292_b18
  article-title: Automatic solution of regular and singular vector Sturm-Liouville problems
  publication-title: Numer. Algorithms
  doi: 10.1007/BF02142741
– volume: 184
  start-page: 1287
  issue: 4
  year: 2013
  ident: 10.1016/j.cam.2022.114292_b7
  article-title: Automatic computation of quantum-mechanical bound states and wavefunctions
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2012.12.016
– volume: 181
  start-page: 1738
  issue: 10
  year: 2010
  ident: 10.1016/j.cam.2022.114292_b1
  article-title: New numerical method for the eigenvalue problem of the 2D Schrödinger equation
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2010.06.031
– volume: 53
  start-page: 509
  issue: 2
  year: 2005
  ident: 10.1016/j.cam.2022.114292_b11
  article-title: Exponentially fitted quadrature rules of Gauss type for oscillatory integrands
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2004.08.018
– volume: 147
  start-page: 834
  issue: 3
  year: 2002
  ident: 10.1016/j.cam.2022.114292_b6
  article-title: LILIX—a package for the solution of the coupled channel Schrödinger equation. this program can be downloaded from the CPC program library under catalogue identifier:
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(02)00459-9
SSID ssj0006914
Score 2.3665311
Snippet We present important improvements and additions to a modern technique developed by Ixaru to solve the time-dependent two-dimensional Schrödinger equation with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 114292
SubjectTerms Constant Perturbations Methods
Eigenfunctions
Eigenvalues
Schrödinger equation
Title Improvements to the computation of eigenvalues and eigenfunctions of two-dimensional Schrödinger equations by constant perturbation based algorithms
URI https://dx.doi.org/10.1016/j.cam.2022.114292
Volume 412
WOSCitedRecordID wos000829826200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1778
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006914
  issn: 0377-0427
  databaseCode: AIEXJ
  dateStart: 20211214
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgUsEE9RoMgLViCjyHl4vCx9CKpSsRjQ7CI7saHVkJQhLdMP4QP4if5Af4x7Y8dJpxTRBZtoJuM4lu8Z32P73mNCXmTg8kSqFSs11yxJCs60kJwpcPdCGVGostWZ3RP7--PpVH4YjX51uTAnM1FV48VCHv1XU8M9MDamzl7D3KFSuAGfwehwBbPD9Z8M75YJjEtd88yyaM9uCOzQoAQnynwbp9DcfkcPF8Limh81K1H434l2oFhnu6f-JiudcqH5duyD6IC_Fo5ktiLI4MK0exE6yPKVmn2u5wfNF6-KfpkHD9rmdQuUZ8Zfg6Rsv5avzKlx1H9S9xEEn2CU2lLGh0bjYs9iuJwBM-EuMC6kcQnB8ACQ4RCd-FBrN8hi-q87QO_S-O-WIg5hbo8qA5y_7ste1Npe8oEhMrELejvMoYocq8hdFTfIKhephLF_dePd9nQ3uPtMOgH5rt3d1nkbRLjUjj-TnwGhmdwld7wF6IZD0D0yMtV9cvt93-cPyM8hlmhTU_iNDuxFa0sHWKJgPHoRS1hiCUsUsXR-5nBEA46oPqUdjugQR7TFEe1x9JB83NmebL5l_hwPVnApGlYCzYVZ6Ti20sTQhSJOlFVWi4RrW0gFHNNGaWSjcgzzFSDQ0mTKSqWg5zRPbfyIrFR1ZR4TmmodiUxmvJX6i6WSuFeoMD87jTRP1kjUdXBeeJF7PGtlll9p2DXyMjxy5BRe_lY46ayWe4rqqGcOCLz6sSfXecdTcqv_YzwjK8382KyTm8VJc_B9_tzD7zddvbn6
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improvements+to+the+computation+of+eigenvalues+and+eigenfunctions+of+two-dimensional+Schr%C3%B6dinger+equations+by+constant+perturbation+based+algorithms&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Baeyens%2C+Toon&rft.au=Van+Daele%2C+Marnix&rft.date=2022-10-01&rft.issn=0377-0427&rft.volume=412&rft.spage=114292&rft_id=info:doi/10.1016%2Fj.cam.2022.114292&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cam_2022_114292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon