Improvements to the computation of eigenvalues and eigenfunctions of two-dimensional Schrödinger equations by constant perturbation based algorithms

We present important improvements and additions to a modern technique developed by Ixaru to solve the time-dependent two-dimensional Schrödinger equation with homogeneous Dirichlet boundary conditions over a rectangular domain. The algorithm, first described in Ixaru (2010), is based on the so-calle...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 412; s. 114292
Hlavní autoři: Baeyens, Toon, Van Daele, Marnix
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2022
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present important improvements and additions to a modern technique developed by Ixaru to solve the time-dependent two-dimensional Schrödinger equation with homogeneous Dirichlet boundary conditions over a rectangular domain. The algorithm, first described in Ixaru (2010), is based on the so-called Constant Perturbation technique. In this paper, we refine and extend the algorithm with important features. We focus in particular on new algorithms for the determination of the index of the eigenvalues, for the orthonormalization of eigenfunctions, for automatic step size selection and for the accurate computation of integrals. We provide the new developments with sufficient theoretical background and numerical experiments.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2022.114292