Efficient simulation of mixed boundary value problems and conformal mappings

We present a stochastic method for the simulation of Laplace's equation with a mixed boundary condition in planar domains that are polygonal or bounded by circular arcs. We call this method the Reflected Walk-on-Spheres algorithm. The method combines a traditional Walk-on-Spheres algorithm with...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 488; s. 129119
Hlavní autoři: Han, Qiansheng, Rasila, Antti, Sottinen, Tommi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.03.2025
Témata:
ISSN:0096-3003
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a stochastic method for the simulation of Laplace's equation with a mixed boundary condition in planar domains that are polygonal or bounded by circular arcs. We call this method the Reflected Walk-on-Spheres algorithm. The method combines a traditional Walk-on-Spheres algorithm with use of reflections at the Neumann boundaries. We apply our algorithm to simulate numerical conformal mappings from certain quadrilaterals to the corresponding canonical domains, and to compute their conformal moduli. Finally, we give examples of the method on three dimensional polyhedral domains, and use it to simulate the heat flow on an L-shaped insulated polyhedron. •We provide an efficient stochastic algorithm for numerical computation of conformal mappings in the plane.•Our algorithm is based on the Walk-on-Spheres approach that is extended to certain types of mixed boundary value problems.•Harmonic solutions to mixed boundary value problems can also be obtained in higher dimensions.•Random walks are simulated independently of each other, allowing efficient use of parallel computation.•Algorithm does not require pre-existing mesh making it well-suited for conformal mesh generation.
ISSN:0096-3003
DOI:10.1016/j.amc.2024.129119