LiDAR Point Clouds to 3-D Urban Models : A Review

Three-dimensional (3-D) urban models are an integral part of numerous applications, such as urban planning and performance simulation, mapping and visualization, emergency response training and entertainment, among others. We consolidate various algorithms proposed for reconstructing 3-D models of u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 11; H. 2; S. 606 - 627
Hauptverfasser: Wang, Ruisheng, Peethambaran, Jiju, Chen, Dong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.02.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Three-dimensional (3-D) urban models are an integral part of numerous applications, such as urban planning and performance simulation, mapping and visualization, emergency response training and entertainment, among others. We consolidate various algorithms proposed for reconstructing 3-D models of urban objects from point clouds. Urban models addressed in this review include buildings, vegetation, utilities such as roads or power lines and free-form architectures such as curved buildings or statues, all of which are ubiquitous in a typical urban scenario. While urban modeling, building reconstruction, in particular, clearly demand specific traits in the models, such as regularity, symmetry, and repetition; most of the traditional and state-of-the-art 3-D reconstruction algorithms are designed to address very generic objects of arbitrary shapes and topology. The recent efforts in the urban reconstruction arena, however, strive to accommodate the various pressing needs of urban modeling. Strategically, urban modeling research nowadays focuses on the usage of specialized priors, such as global regularity, Manhattan-geometry or symmetry to aid the reconstruction, or efficient adaptation of existing reconstruction techniques to the urban modeling pipeline. Aimed at an in-depth exploration of further possibilities, we review the existing urban reconstruction algorithms, prevalent in computer graphics, computer vision and photogrammetry disciplines, evaluate their performance in the architectural modeling context, and discuss the adaptability of generic mesh reconstruction techniques to the urban modeling pipeline. In the end, we suggest a few directions of research that may be adopted to close in the technology gaps.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2017.2781132