A suite of second-order composite sub-step explicit algorithms with controllable numerical dissipation and maximal stability bounds

•This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each explicit scheme is second-order accurate and provides maximal stability bound.•Each explicit scheme (s>1) can control numerical dissipation at...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematical modelling Vol. 114; pp. 601 - 626
Main Authors: Li, Jinze, Li, Hua, Lian, Yiwei, Zhao, Rui, Yu, Kaiping
Format: Journal Article
Language:English
Published: Elsevier Inc 01.02.2023
Subjects:
ISSN:0307-904X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each explicit scheme is second-order accurate and provides maximal stability bound.•Each explicit scheme (s>1) can control numerical dissipation at the bifurcation point. This paper constructs a composite s-sub-step explicit method and analyzes second-order accuracy, conditional stability, and dissipation control at the bifurcation point. In the present s-sub-step method, each explicit scheme achieves identical second-order accuracy for analyzing general structures and provides maximal stability bound, that is 2×s where s denotes the number of sub-steps. Except for the single-sub-step case, each explicit scheme achieves dissipation control at the bifurcation point. After registering second-order accuracy and controllable numerical dissipation, the composite multi-sub-step explicit method should be well-designed to reach maximal stability bound. The analysis reveals that as the number of sub-steps increases, the developed explicit schemes can reduce numerical low-frequency dissipation and enlarge stability. Under the same computational cost, the advantage of reducing low-frequency dissipation and enlarging stability is gradually weakened with the increase of sub-steps, so the first seven explicit schemes are only developed and compared in this paper. Some typical experiments are provided to confirm the methods’ numerical performance. The proposed explicit schemes are more accurate and efficient for some models than existing second-order algorithms of that class.
AbstractList •This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each explicit scheme is second-order accurate and provides maximal stability bound.•Each explicit scheme (s>1) can control numerical dissipation at the bifurcation point. This paper constructs a composite s-sub-step explicit method and analyzes second-order accuracy, conditional stability, and dissipation control at the bifurcation point. In the present s-sub-step method, each explicit scheme achieves identical second-order accuracy for analyzing general structures and provides maximal stability bound, that is 2×s where s denotes the number of sub-steps. Except for the single-sub-step case, each explicit scheme achieves dissipation control at the bifurcation point. After registering second-order accuracy and controllable numerical dissipation, the composite multi-sub-step explicit method should be well-designed to reach maximal stability bound. The analysis reveals that as the number of sub-steps increases, the developed explicit schemes can reduce numerical low-frequency dissipation and enlarge stability. Under the same computational cost, the advantage of reducing low-frequency dissipation and enlarging stability is gradually weakened with the increase of sub-steps, so the first seven explicit schemes are only developed and compared in this paper. Some typical experiments are provided to confirm the methods’ numerical performance. The proposed explicit schemes are more accurate and efficient for some models than existing second-order algorithms of that class.
Author Li, Hua
Li, Jinze
Yu, Kaiping
Lian, Yiwei
Zhao, Rui
Author_xml – sequence: 1
  givenname: Jinze
  surname: Li
  fullname: Li, Jinze
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China
– sequence: 2
  givenname: Hua
  surname: Li
  fullname: Li, Hua
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
– sequence: 3
  givenname: Yiwei
  surname: Lian
  fullname: Lian, Yiwei
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China
– sequence: 4
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China
– sequence: 5
  givenname: Kaiping
  orcidid: 0000-0002-7722-0138
  surname: Yu
  fullname: Yu, Kaiping
  email: kaipingyu1968@gmail.com
  organization: Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China
BookMark eNp9kDtPwzAQgD0UiRb4AWz-Awl20jSxmKqKl1SJBSS2yI8LuHLsyHagnfnjOJSJodPpHt_p7lugmXUWELqmJKeErm52OR_6vCBFkfKc0GKG5qQkdcbI8u0cLULYEUKqlM3R9xqHUUfArsMBpLMqc16Bx9L1gwtTJ4wiCxEGDPvBaKkj5ubdeR0_-oC_UkizNnpnDBcGsB178Fpyg5UOQQ88amcxtwr3fK_7VA-RC210PGDhRqvCJTrruAlw9Rcv0Ov93cvmMds-Pzxt1ttMFqyOmWSqWTasoqWUCoRoRFNLUkLDRKUqXheErDoouGTAqOrKlayLijVcJIzBkpQXiB73Su9C8NC1g08H-UNLSTuZa3dtMtdO5qZSMpeY-h-TBPy-FD3X5iR5eyQhvfSpwbdBarASlPYgY6ucPkH_ALTTkV0
CitedBy_id crossref_primary_10_1002_nme_7639
crossref_primary_10_1016_j_compstruc_2024_107294
crossref_primary_10_1016_j_istruc_2025_109232
crossref_primary_10_1007_s00419_024_02637_y
crossref_primary_10_1002_nme_7328
crossref_primary_10_1615_IntJMultCompEng_2025054525
Cites_doi 10.1002/nme.6574
10.1002/nme.6543
10.1016/j.apm.2018.12.027
10.1002/nme.1620372303
10.1108/EC-07-2018-0312
10.1121/1.2011149
10.1016/j.cma.2014.08.007
10.1016/j.apnum.2017.04.006
10.1007/s00366-021-01290-1
10.1016/j.cma.2021.114274
10.1002/nme.1620151011
10.1016/j.apacoust.2021.108410
10.1016/S0045-7825(96)01036-5
10.1016/j.ijmecsci.2020.105429
10.1007/BF00363983
10.1007/s40314-017-0520-3
10.1007/s11071-020-06101-8
10.1016/j.compstruc.2013.06.007
10.1016/j.cma.2021.113950
10.1142/S0219455421500735
10.1016/j.istruc.2021.08.129
10.1007/s00419-019-01637-7
10.1007/s11071-019-04936-4
10.1007/s00366-020-01184-8
10.1002/eqe.818
10.1016/j.compstruc.2018.06.005
10.1142/S0219455421501066
10.1002/num.21899
10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
10.1115/1.3422999
10.1016/j.cma.2022.114945
10.1016/j.compstruc.2013.07.001
10.1115/1.2900803
10.1007/s10915-017-0552-2
10.1007/s00419-021-01989-z
10.1016/j.jcp.2013.04.024
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright_xml – notice: 2022 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.apm.2022.10.012
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EndPage 626
ExternalDocumentID 10_1016_j_apm_2022_10_012
S0307904X22004814
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-c9d8489513ccdebb8b87c03e89b5d5a72006fe2ac9e91df36c72598abd849e403
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000877521900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
IngestDate Sat Nov 29 07:22:56 EST 2025
Tue Nov 18 21:42:05 EST 2025
Fri Feb 23 02:39:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Composite s-sub-step
Second-order accuracy
Explicit algorithms
Self-starting
Controllable dissipation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-c9d8489513ccdebb8b87c03e89b5d5a72006fe2ac9e91df36c72598abd849e403
ORCID 0000-0002-7722-0138
PageCount 26
ParticipantIDs crossref_primary_10_1016_j_apm_2022_10_012
crossref_citationtrail_10_1016_j_apm_2022_10_012
elsevier_sciencedirect_doi_10_1016_j_apm_2022_10_012
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle Applied mathematical modelling
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Yu, Li (bib0004) 2021; 122
Kim, Reddy (bib0014) 2020; 172
Cook, Malkus, Plesha, Witt (bib0037) 2001
Ji, Xing (bib0011) 2021; 91
Kuhl, Crisfield (bib0046) 1999; 45
Chung, Lee (bib0028) 1994; 37
Li, Yu (bib0036) 2020; 90
Krieg (bib0008) 1973; 40
Li, Zhao, Yu, Li (bib0020) 2022; 389
Benítez, Montáns (bib0026) 2013; 128
Yu (bib0030) 2008; 37
Baskaran, Hu, Lowengrub, Wang, Wise, Zhou (bib0042) 2013; 250
Hulbert, Chung (bib0005) 1996; 137
Yue, Guddati (bib0044) 2005; 118
Zhao, Li, Cao, Du (bib0032) 2018; 36
Shao, Cai (bib0002) 1988; 5
Li, Yu, Tang (bib0045) 2021; 21
Li, Yu, Zhao (bib0017) 2022; 395
Kim, Lee (bib0027) 2018; 206
Zhang, Huang, Wang, Yue (bib0043) 2018; 75
Wood, Bossak, Zienkiewicz (bib0006) 1980; 15
Shaaban, Anitescu, Atroshchenko, Rabczuk (bib0039) 2022; 185
Géradin, Rixen (bib0031) 2015
Chung, Hulbert (bib0003) 1993; 60
Soares (bib0013) 2022; 38
Cheng, Feng, Gottlieb, Wang (bib0040) 2015; 31
Zhang, Wang, Huang, Wang, Yue (bib0041) 2017; 119
Li, Yu (bib0025) 2020; 102
Li, Yu, Li (bib0001) 2019; 96
Fung, Fan, Sheng (bib0022) 1996; 17
Noh, Bathe (bib0009) 2013; 129
Rezaiee-Pajand, Karimi-Rad (bib0033) 2018; 37
BenchmarkTools.jl, (A benchmarking framework for the Julia language). Accessed: 2022–03–05, https://github.com/JuliaCI/BenchmarkTools.jl.
Li, Yu (bib0035) 2019; 69
Liu, Guo (bib0016) 2021; 34
Bonet, Gil, Wood (bib0018) 2021
Hughes (bib0019) 2000
Li, Li, Yu, Zhao (bib0021) 2022
Wood (bib0029) 1990
Zhao, Li, Yu (bib0007) 2022
Li, Yu (bib0010) 2021; 103
Soares (bib0012) 2022; 38
Rezaiee-Pajand, Esfehani, Ehsanmanesh (bib0023) 2021; 21
Soares (bib0024) 2014; 283
Shaaban, Anitescu, Atroshchenko, Rabczuk (bib0038) 2021; 384
Wen, Deng, Duan, Fang (bib0015) 2021; 122
Chung (10.1016/j.apm.2022.10.012_bib0028) 1994; 37
Rezaiee-Pajand (10.1016/j.apm.2022.10.012_bib0023) 2021; 21
Chung (10.1016/j.apm.2022.10.012_bib0003) 1993; 60
Kim (10.1016/j.apm.2022.10.012_bib0014) 2020; 172
Benítez (10.1016/j.apm.2022.10.012_bib0026) 2013; 128
Baskaran (10.1016/j.apm.2022.10.012_bib0042) 2013; 250
Wen (10.1016/j.apm.2022.10.012_bib0015) 2021; 122
Géradin (10.1016/j.apm.2022.10.012_bib0031) 2015
Soares (10.1016/j.apm.2022.10.012_bib0013) 2022; 38
Zhang (10.1016/j.apm.2022.10.012_bib0043) 2018; 75
Rezaiee-Pajand (10.1016/j.apm.2022.10.012_bib0033) 2018; 37
10.1016/j.apm.2022.10.012_bib0034
Shaaban (10.1016/j.apm.2022.10.012_bib0039) 2022; 185
Noh (10.1016/j.apm.2022.10.012_bib0009) 2013; 129
Li (10.1016/j.apm.2022.10.012_bib0010) 2021; 103
Li (10.1016/j.apm.2022.10.012_bib0021)
Li (10.1016/j.apm.2022.10.012_bib0045) 2021; 21
Cook (10.1016/j.apm.2022.10.012_bib0037) 2001
Bonet (10.1016/j.apm.2022.10.012_bib0018) 2021
Wood (10.1016/j.apm.2022.10.012_bib0029) 1990
Ji (10.1016/j.apm.2022.10.012_bib0011) 2021; 91
Li (10.1016/j.apm.2022.10.012_bib0036) 2020; 90
Shaaban (10.1016/j.apm.2022.10.012_bib0038) 2021; 384
Kim (10.1016/j.apm.2022.10.012_bib0027) 2018; 206
Zhao (10.1016/j.apm.2022.10.012_bib0032) 2018; 36
Yue (10.1016/j.apm.2022.10.012_bib0044) 2005; 118
Soares (10.1016/j.apm.2022.10.012_bib0012) 2022; 38
Li (10.1016/j.apm.2022.10.012_bib0025) 2020; 102
Wood (10.1016/j.apm.2022.10.012_bib0006) 1980; 15
Krieg (10.1016/j.apm.2022.10.012_bib0008) 1973; 40
Li (10.1016/j.apm.2022.10.012_bib0020) 2022; 389
Li (10.1016/j.apm.2022.10.012_bib0004) 2021; 122
Hughes (10.1016/j.apm.2022.10.012_bib0019) 2000
Soares (10.1016/j.apm.2022.10.012_bib0024) 2014; 283
Li (10.1016/j.apm.2022.10.012_bib0035) 2019; 69
Cheng (10.1016/j.apm.2022.10.012_bib0040) 2015; 31
Li (10.1016/j.apm.2022.10.012_bib0001) 2019; 96
Liu (10.1016/j.apm.2022.10.012_bib0016) 2021; 34
Shao (10.1016/j.apm.2022.10.012_bib0002) 1988; 5
Li (10.1016/j.apm.2022.10.012_bib0017) 2022; 395
Yu (10.1016/j.apm.2022.10.012_bib0030) 2008; 37
Fung (10.1016/j.apm.2022.10.012_bib0022) 1996; 17
Zhang (10.1016/j.apm.2022.10.012_bib0041) 2017; 119
Hulbert (10.1016/j.apm.2022.10.012_bib0005) 1996; 137
Kuhl (10.1016/j.apm.2022.10.012_bib0046) 1999; 45
Zhao (10.1016/j.apm.2022.10.012_bib0007) 2022
References_xml – volume: 128
  start-page: 243
  year: 2013
  end-page: 250
  ident: bib0026
  article-title: The value of numerical amplification matrices in time integration methods
  publication-title: Comput. Struct.
– volume: 21
  start-page: 2150073
  year: 2021
  ident: bib0045
  article-title: Further assessment of three Bathe algorithms and implementations for wave propagation problems
  publication-title: Int. J. Struct. Stab. Dyn.
– volume: 91
  start-page: 3959
  year: 2021
  end-page: 3985
  ident: bib0011
  article-title: A three-stage explicit time integration method with controllable numerical dissipation
  publication-title: Arch. Appl. Mech.
– year: 2015
  ident: bib0031
  article-title: Mechanical Vibrations: Theory and Application to Structural Dynamics
– year: 2022
  ident: bib0007
  article-title: A self-starting dissipative alternative to the central difference methods
  publication-title: Arch. Appl. Mech.
– volume: 137
  start-page: 175
  year: 1996
  end-page: 188
  ident: bib0005
  article-title: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 122
  start-page: 431
  year: 2021
  end-page: 454
  ident: bib0015
  article-title: A high-order accurate explicit time integration method based on cubic B-spline interpolation and weighted residual technique for structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
– volume: 37
  start-page: 3961
  year: 1994
  end-page: 3976
  ident: bib0028
  article-title: A new family of explicit time integration methods for linear and non-linear structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
– volume: 15
  start-page: 1562
  year: 1980
  end-page: 1566
  ident: bib0006
  article-title: An alpha modification of Newmark’s method
  publication-title: Int. J. Numer. Methods Eng.
– volume: 90
  start-page: 737
  year: 2020
  end-page: 772
  ident: bib0036
  article-title: A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics
  publication-title: Arch. Appl. Mech.
– volume: 38
  start-page: 773
  year: 2022
  end-page: 787
  ident: bib0013
  article-title: Efficient high-order accurate explicit time-marching procedures for dynamic analyses
  publication-title: Eng. Comput.
– volume: 37
  start-page: 3431
  year: 2018
  end-page: 3454
  ident: bib0033
  article-title: A family of second-order fully explicit time integration schemes
  publication-title: Comput. Appl. Math.
– volume: 103
  start-page: 1911
  year: 2021
  end-page: 1936
  ident: bib0010
  article-title: Development of composite sub-step explicit dissipative algorithms with truly self-starting property
  publication-title: Nonlinear Dyn.
– volume: 45
  start-page: 569
  year: 1999
  end-page: 599
  ident: bib0046
  article-title: Energy-conserving and decaying algorithms in non-linear structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
– volume: 122
  start-page: 1089
  year: 2021
  end-page: 1132
  ident: bib0004
  article-title: An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
– volume: 21
  start-page: 2150106
  year: 2021
  ident: bib0023
  article-title: An efficient weighted residual time integration family
  publication-title: Int. J. Struct. Stab. Dyn.
– reference: BenchmarkTools.jl, (A benchmarking framework for the Julia language). Accessed: 2022–03–05, https://github.com/JuliaCI/BenchmarkTools.jl.
– volume: 389
  start-page: 114274
  year: 2022
  ident: bib0020
  article-title: Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 36
  start-page: 161
  year: 2018
  end-page: 177
  ident: bib0032
  article-title: An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems
  publication-title: Eng. Comput.
– volume: 5
  start-page: 76
  year: 1988
  end-page: 81
  ident: bib0002
  article-title: A three parameters algorithm for numerical integration of structural dynamic equations
  publication-title: Chin. J. Appl. Mech.
– volume: 102
  start-page: 2503
  year: 2020
  end-page: 2530
  ident: bib0025
  article-title: A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics
  publication-title: Nonlinear Dyn.
– volume: 69
  start-page: 255
  year: 2019
  end-page: 272
  ident: bib0035
  article-title: An alternative to the Bathe algorithm
  publication-title: Appl. Math. Model.
– volume: 206
  start-page: 42
  year: 2018
  end-page: 53
  ident: bib0027
  article-title: An improved explicit time integration method for linear and nonlinear structural dynamics
  publication-title: Comput. Struct.
– volume: 34
  start-page: 2735
  year: 2021
  end-page: 2745
  ident: bib0016
  article-title: A novel predictor–corrector explicit integration scheme for structural dynamics
  publication-title: Structures
– volume: 60
  start-page: 371
  year: 1993
  end-page: 375
  ident: bib0003
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-
  publication-title: J. Appl. Mech.
– year: 2022
  ident: bib0021
  article-title: High-order accurate multi-sub-step implicit integration algorithms with dissipation control for second-order hyperbolic problems
– volume: 283
  start-page: 1138
  year: 2014
  end-page: 1166
  ident: bib0024
  article-title: A simple and effective new family of time marching procedures for dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 395
  start-page: 114945
  year: 2022
  ident: bib0017
  article-title: Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 118
  start-page: 2132
  year: 2005
  end-page: 2141
  ident: bib0044
  article-title: Dispersion-reducing finite elements for transient acoustics
  publication-title: J. Acoust. Soc. Am.
– volume: 37
  start-page: 1389
  year: 2008
  end-page: 1409
  ident: bib0030
  article-title: A new family of generalized-
  publication-title: Earthq. Eng. Struct. Dyn.
– volume: 40
  start-page: 417
  year: 1973
  end-page: 421
  ident: bib0008
  article-title: Unconditional stability in numerical time integration methods
  publication-title: J. Appl. Mech.
– year: 2001
  ident: bib0037
  article-title: Concepts and Applications of Finite Element Analysis
– volume: 250
  start-page: 270
  year: 2013
  end-page: 292
  ident: bib0042
  article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
  publication-title: J. Comput. Phys.
– year: 2000
  ident: bib0019
  article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
  publication-title: Dover Civil and Mechanical Engineering
– volume: 119
  start-page: 179
  year: 2017
  end-page: 193
  ident: bib0041
  article-title: A second order operator splitting numerical scheme for the “good” Boussinesq equation
  publication-title: Appl. Numer. Math.
– volume: 96
  start-page: 2475
  year: 2019
  end-page: 2507
  ident: bib0001
  article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis
  publication-title: Nonlinear Dyn.
– volume: 384
  start-page: 113950
  year: 2021
  ident: bib0038
  article-title: 3D isogeometric boundary element analysis and structural shape optimization for Helmholtz acoustic scattering problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 129
  start-page: 178
  year: 2013
  end-page: 193
  ident: bib0009
  article-title: An explicit time integration scheme for the analysis of wave propagations
  publication-title: Comput. Struct.
– volume: 38
  start-page: 3251
  year: 2022
  end-page: 3268
  ident: bib0012
  article-title: Three novel truly-explicit time-marching procedures considering adaptive dissipation control
  publication-title: Eng. Comput.
– volume: 172
  start-page: 105429
  year: 2020
  ident: bib0014
  article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems
  publication-title: Int. J. Mech. Sci.
– year: 1990
  ident: bib0029
  article-title: Practical Time-Stepping Schemes
– volume: 31
  start-page: 202
  year: 2015
  end-page: 224
  ident: bib0040
  article-title: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy
  publication-title: Numer. Methods Partial Differ. Equ.
– year: 2021
  ident: bib0018
  article-title: Nonlinear Solid Mechanics for Finite Element Analysis: Dynamics
– volume: 17
  start-page: 398
  year: 1996
  end-page: 405
  ident: bib0022
  article-title: Extrapolated Galerkin time finite elements
  publication-title: Comput. Mech.
– volume: 185
  start-page: 108410
  year: 2022
  ident: bib0039
  article-title: An isogeometric Burton-Miller method for the transmission loss optimization with application to mufflers with internal extended tubes
  publication-title: Appl. Acoust.
– volume: 75
  start-page: 687
  year: 2018
  end-page: 712
  ident: bib0043
  article-title: On the operator splitting and integral equation preconditioned deferred correction methods for the “good” Boussinesq equation
  publication-title: J. Sci. Comput.
– volume: 122
  start-page: 1089
  issue: 4
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0004
  article-title: An identical second-order single step explicit integration algorithm with dissipation control for structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6574
– volume: 122
  start-page: 431
  issue: 2
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0015
  article-title: A high-order accurate explicit time integration method based on cubic B-spline interpolation and weighted residual technique for structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.6543
– year: 1990
  ident: 10.1016/j.apm.2022.10.012_bib0029
– volume: 69
  start-page: 255
  year: 2019
  ident: 10.1016/j.apm.2022.10.012_bib0035
  article-title: An alternative to the Bathe algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.12.027
– volume: 37
  start-page: 3961
  issue: 23
  year: 1994
  ident: 10.1016/j.apm.2022.10.012_bib0028
  article-title: A new family of explicit time integration methods for linear and non-linear structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620372303
– volume: 36
  start-page: 161
  issue: 1
  year: 2018
  ident: 10.1016/j.apm.2022.10.012_bib0032
  article-title: An explicit time integration algorithm for linear and non-linear finite element analyses of dynamic and wave problems
  publication-title: Eng. Comput.
  doi: 10.1108/EC-07-2018-0312
– volume: 118
  start-page: 2132
  issue: 4
  year: 2005
  ident: 10.1016/j.apm.2022.10.012_bib0044
  article-title: Dispersion-reducing finite elements for transient acoustics
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2011149
– volume: 283
  start-page: 1138
  year: 2014
  ident: 10.1016/j.apm.2022.10.012_bib0024
  article-title: A simple and effective new family of time marching procedures for dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2014.08.007
– volume: 119
  start-page: 179
  year: 2017
  ident: 10.1016/j.apm.2022.10.012_bib0041
  article-title: A second order operator splitting numerical scheme for the “good” Boussinesq equation
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2017.04.006
– year: 2022
  ident: 10.1016/j.apm.2022.10.012_bib0007
  article-title: A self-starting dissipative alternative to the central difference methods
  publication-title: Arch. Appl. Mech.
– volume: 38
  start-page: 3251
  year: 2022
  ident: 10.1016/j.apm.2022.10.012_bib0012
  article-title: Three novel truly-explicit time-marching procedures considering adaptive dissipation control
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-021-01290-1
– volume: 389
  start-page: 114274
  year: 2022
  ident: 10.1016/j.apm.2022.10.012_bib0020
  article-title: Directly self-starting higher-order implicit integration algorithms with flexible dissipation control for structural dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114274
– volume: 15
  start-page: 1562
  issue: 10
  year: 1980
  ident: 10.1016/j.apm.2022.10.012_bib0006
  article-title: An alpha modification of Newmark’s method
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620151011
– volume: 185
  start-page: 108410
  year: 2022
  ident: 10.1016/j.apm.2022.10.012_bib0039
  article-title: An isogeometric Burton-Miller method for the transmission loss optimization with application to mufflers with internal extended tubes
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108410
– volume: 137
  start-page: 175
  issue: 2
  year: 1996
  ident: 10.1016/j.apm.2022.10.012_bib0005
  article-title: Explicit time integration algorithms for structural dynamics with optimal numerical dissipation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01036-5
– volume: 172
  start-page: 105429
  year: 2020
  ident: 10.1016/j.apm.2022.10.012_bib0014
  article-title: Novel explicit time integration schemes for efficient transient analyses of structural problems
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2020.105429
– year: 2000
  ident: 10.1016/j.apm.2022.10.012_bib0019
  article-title: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
– volume: 17
  start-page: 398
  issue: 6
  year: 1996
  ident: 10.1016/j.apm.2022.10.012_bib0022
  article-title: Extrapolated Galerkin time finite elements
  publication-title: Comput. Mech.
  doi: 10.1007/BF00363983
– year: 2015
  ident: 10.1016/j.apm.2022.10.012_bib0031
– volume: 37
  start-page: 3431
  year: 2018
  ident: 10.1016/j.apm.2022.10.012_bib0033
  article-title: A family of second-order fully explicit time integration schemes
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-017-0520-3
– volume: 102
  start-page: 2503
  issue: 4
  year: 2020
  ident: 10.1016/j.apm.2022.10.012_bib0025
  article-title: A truly self-starting implicit family of integration algorithms with dissipation control for nonlinear dynamics
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-020-06101-8
– volume: 129
  start-page: 178
  year: 2013
  ident: 10.1016/j.apm.2022.10.012_bib0009
  article-title: An explicit time integration scheme for the analysis of wave propagations
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.06.007
– volume: 5
  start-page: 76
  issue: 4
  year: 1988
  ident: 10.1016/j.apm.2022.10.012_bib0002
  article-title: A three parameters algorithm for numerical integration of structural dynamic equations
  publication-title: Chin. J. Appl. Mech.
– volume: 384
  start-page: 113950
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0038
  article-title: 3D isogeometric boundary element analysis and structural shape optimization for Helmholtz acoustic scattering problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113950
– volume: 21
  start-page: 2150073
  issue: 5
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0045
  article-title: Further assessment of three Bathe algorithms and implementations for wave propagation problems
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455421500735
– volume: 34
  start-page: 2735
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0016
  article-title: A novel predictor–corrector explicit integration scheme for structural dynamics
  publication-title: Structures
  doi: 10.1016/j.istruc.2021.08.129
– volume: 103
  start-page: 1911
  issue: 2
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0010
  article-title: Development of composite sub-step explicit dissipative algorithms with truly self-starting property
  publication-title: Nonlinear Dyn.
– year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0018
– volume: 90
  start-page: 737
  issue: 4
  year: 2020
  ident: 10.1016/j.apm.2022.10.012_bib0036
  article-title: A novel family of composite sub-step algorithms with desired numerical dissipations for structural dynamics
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-019-01637-7
– ident: 10.1016/j.apm.2022.10.012_bib0021
– volume: 96
  start-page: 2475
  issue: 4
  year: 2019
  ident: 10.1016/j.apm.2022.10.012_bib0001
  article-title: A novel family of controllably dissipative composite integration algorithms for structural dynamic analysis
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-019-04936-4
– volume: 38
  start-page: 773
  year: 2022
  ident: 10.1016/j.apm.2022.10.012_bib0013
  article-title: Efficient high-order accurate explicit time-marching procedures for dynamic analyses
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-020-01184-8
– volume: 37
  start-page: 1389
  issue: 12
  year: 2008
  ident: 10.1016/j.apm.2022.10.012_bib0030
  article-title: A new family of generalized-α time integration algorithms without overshoot for structural dynamics
  publication-title: Earthq. Eng. Struct. Dyn.
  doi: 10.1002/eqe.818
– year: 2001
  ident: 10.1016/j.apm.2022.10.012_bib0037
– volume: 206
  start-page: 42
  year: 2018
  ident: 10.1016/j.apm.2022.10.012_bib0027
  article-title: An improved explicit time integration method for linear and nonlinear structural dynamics
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2018.06.005
– volume: 21
  start-page: 2150106
  issue: 8
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0023
  article-title: An efficient weighted residual time integration family
  publication-title: Int. J. Struct. Stab. Dyn.
  doi: 10.1142/S0219455421501066
– volume: 31
  start-page: 202
  issue: 1
  year: 2015
  ident: 10.1016/j.apm.2022.10.012_bib0040
  article-title: A Fourier pseudospectral method for the “good” Boussinesq equation with second-order temporal accuracy
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.21899
– volume: 45
  start-page: 569
  issue: 5
  year: 1999
  ident: 10.1016/j.apm.2022.10.012_bib0046
  article-title: Energy-conserving and decaying algorithms in non-linear structural dynamics
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A
– volume: 40
  start-page: 417
  issue: 2
  year: 1973
  ident: 10.1016/j.apm.2022.10.012_bib0008
  article-title: Unconditional stability in numerical time integration methods
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.3422999
– volume: 395
  start-page: 114945
  year: 2022
  ident: 10.1016/j.apm.2022.10.012_bib0017
  article-title: Two third-order explicit integration algorithms with controllable numerical dissipation for second-order nonlinear dynamics
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2022.114945
– volume: 128
  start-page: 243
  issue: 5
  year: 2013
  ident: 10.1016/j.apm.2022.10.012_bib0026
  article-title: The value of numerical amplification matrices in time integration methods
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2013.07.001
– volume: 60
  start-page: 371
  issue: 2
  year: 1993
  ident: 10.1016/j.apm.2022.10.012_bib0003
  article-title: A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-α method
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2900803
– volume: 75
  start-page: 687
  issue: 2
  year: 2018
  ident: 10.1016/j.apm.2022.10.012_bib0043
  article-title: On the operator splitting and integral equation preconditioned deferred correction methods for the “good” Boussinesq equation
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0552-2
– ident: 10.1016/j.apm.2022.10.012_bib0034
– volume: 91
  start-page: 3959
  year: 2021
  ident: 10.1016/j.apm.2022.10.012_bib0011
  article-title: A three-stage explicit time integration method with controllable numerical dissipation
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-021-01989-z
– volume: 250
  start-page: 270
  year: 2013
  ident: 10.1016/j.apm.2022.10.012_bib0042
  article-title: Energy stable and efficient finite-difference nonlinear multigrid schemes for the modified phase field crystal equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.04.024
SSID ssj0005904
Score 2.4323764
Snippet •This paper constructs and analyzes a composite s-sub-step explicit method.•Seven explicit schemes in the present method are developed and compared.•Each...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Composite [formula omitted]-sub-step
Controllable dissipation
Explicit algorithms
Second-order accuracy
Self-starting
Title A suite of second-order composite sub-step explicit algorithms with controllable numerical dissipation and maximal stability bounds
URI https://dx.doi.org/10.1016/j.apm.2022.10.012
Volume 114
WOSCitedRecordID wos000877521900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 20211209
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005904
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeqjQMcEJ9ifMkHTkyZ8h37WKGhMcGE0JDKKbIdBzyladU0o3Dl_-Bvxc-O3WwwxA5cotZJnLbvV_v5-fd-D6EXMhKcRiwORM1IkOYiDwjPs4BUEawuqjCpTdWSt8XJCZnN6PvJ5KfLhTlvirYlmw1d_ldT6zZtbEidvYa5fae6Qb_WRtdHbXZ9_CfDT_e7XtnN_w5Wu1Vg5DUNeRwYWlKf54E27hLk_RslFER9Py9Wav1l3nkuOhDYG5NX1fZ2V8fs5nQDBdtsOszZRs1NwolV-_62z6FKUzf2eJ2bO_f6sJCvAvV3GjdrAh_IkAqOVftdXmw66tm2wQZrP6mvUo0C3ibY-6FX4wBGnDjOsx_nQKeShpao6QflKB0Nq_lwvZ2hc5tj_9vgb-MQZwdsCRIDcXwAtL2BpH1BaPvSBOhpiY7xdlbqLkroQr8vQyhivRsXGdWj5u70zeHseEsiomHqpDbhK7h9c8MgvPQ5_uz5jLyZ0zvo9rAMwVMLn7toItt76NY7b6PuPvoxxQZIeFHjMZCwBxJ2QMIOSHgLJAxAwmMgYQ8kPAIS1kDCA5CwBxK2QHqAPr4-PH11FAwlOwIR02IdCFqRlGivPRGikpwTTgoRJpJQnlUZKyCAVcuYCSppVNVJLgq9_iaM69uoTMPkIdppF618hLBkMcsyHgnCkpTl-jTIndFaO7hpkVV8D4Xu5yzFoGcPZVWa8koz7qGX_palFXP528Wps1E5eKPWyyw13q6-7fF1nvEE3dz-I56infWql8_QDXG-Vt3q-QC2XypWsXE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+suite+of+second-order+composite+sub-step+explicit+algorithms+with+controllable+numerical+dissipation+and+maximal+stability+bounds&rft.jtitle=Applied+mathematical+modelling&rft.au=Li%2C+Jinze&rft.au=Li%2C+Hua&rft.au=Lian%2C+Yiwei&rft.au=Zhao%2C+Rui&rft.date=2023-02-01&rft.issn=0307-904X&rft.volume=114&rft.spage=601&rft.epage=626&rft_id=info:doi/10.1016%2Fj.apm.2022.10.012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2022_10_012
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon