A characterization of testable hypergraph properties

We provide a combinatorial characterization of all testable properties of k-uniform hypergraphs (k-graphs for short). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial theory. Series B Jg. 174; S. 133 - 189
Hauptverfasser: Joos, Felix, Kim, Jaehoon, Kühn, Daniela, Osthus, Deryk
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.2025
Schlagworte:
ISSN:0095-8956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We provide a combinatorial characterization of all testable properties of k-uniform hypergraphs (k-graphs for short). Here, a k-graph property P is testable if there is a randomized algorithm which makes a bounded number of edge queries and distinguishes with probability 2/3 between k-graphs that satisfy P and those that are far from satisfying P. For the 2-graph case, such a combinatorial characterization was obtained by Alon, Fischer, Newman and Shapira. Our results for the k-graph setting are in contrast to those of Austin and Tao, who showed that for the somewhat stronger concept of local repairability, the testability results for graphs do not extend to the 3-graph setting.
ISSN:0095-8956
DOI:10.1016/j.jctb.2025.04.009