Remote Sensing Image Fusion Using Hierarchical Multimodal Probabilistic Latent Semantic Analysis

The generative semantic nature of probabilistic topic models has recently shown encouraging results within the remote sensing image fusion field when conducting land cover categorization. However, standard topic models have not yet been adapted to the inherent complexity of remotely sensed data, whi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in applied earth observations and remote sensing Jg. 11; H. 12; S. 4982 - 4993
Hauptverfasser: Fernandez-Beltran, Ruben, Haut, Juan M., Paoletti, Mercedes E., Plaza, Javier, Plaza, Antonio, Pla, Filiberto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.12.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1939-1404, 2151-1535
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The generative semantic nature of probabilistic topic models has recently shown encouraging results within the remote sensing image fusion field when conducting land cover categorization. However, standard topic models have not yet been adapted to the inherent complexity of remotely sensed data, which eventually may limit their resulting performance. In this scenario, this paper presents a new topic-based image fusion framework, specially designed to fuse synthetic aperture radar (SAR) and multispectral imaging (MSI) data for unsupervised land cover categorization tasks. Specifically, we initially propose a hierarchical multi-modal probabilistic latent semantic analysis (HMpLSA) model that takes advantage of two different vocabulary modalities, as well as two different levels of topics, in order to effectively uncover intersensor semantic patterns. Then, we define an SAR and MSI data fusion framework based on HMpLSA in order to perform unsupervised land cover categorization. Our experiments, conducted using three different SAR and MSI data sets, reveal that the proposed approach is able to provide competitive advantages with respect to standard clustering methods and topic models, as well as several multimodal topic model variants available in the literature.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1939-1404
2151-1535
DOI:10.1109/JSTARS.2018.2881342