Connection coefficients for basic Harish-Chandra series

Basic Harish-Chandra series are asymptotically free meromorphic solutions of the system of basic hypergeometric difference equations associated to root systems. The associated connection coefficients are explicitly computed in terms of Jacobi theta functions. We interpret the connection coefficients...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in mathematics (New York. 1965) Ročník 250; s. 351 - 386
Hlavný autor: Stokman, Jasper V.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.01.2014
Predmet:
ISSN:0001-8708, 1090-2082
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Basic Harish-Chandra series are asymptotically free meromorphic solutions of the system of basic hypergeometric difference equations associated to root systems. The associated connection coefficients are explicitly computed in terms of Jacobi theta functions. We interpret the connection coefficients as the transition functions for asymptotically free meromorphic solutions of Cherednikʼs root system analogs of the quantum Knizhnik–Zamolodchikov equations. They thus give rise to explicit elliptic solutions of root system analogs of dynamical Yang–Baxter and reflection equations. Applications to quantum c-functions, basic hypergeometric functions, reflectionless difference operators and multivariable Baker–Akhiezer functions are discussed.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2013.09.016