Connection coefficients for basic Harish-Chandra series
Basic Harish-Chandra series are asymptotically free meromorphic solutions of the system of basic hypergeometric difference equations associated to root systems. The associated connection coefficients are explicitly computed in terms of Jacobi theta functions. We interpret the connection coefficients...
Uložené v:
| Vydané v: | Advances in mathematics (New York. 1965) Ročník 250; s. 351 - 386 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Inc
15.01.2014
|
| Predmet: | |
| ISSN: | 0001-8708, 1090-2082 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Basic Harish-Chandra series are asymptotically free meromorphic solutions of the system of basic hypergeometric difference equations associated to root systems. The associated connection coefficients are explicitly computed in terms of Jacobi theta functions. We interpret the connection coefficients as the transition functions for asymptotically free meromorphic solutions of Cherednikʼs root system analogs of the quantum Knizhnik–Zamolodchikov equations. They thus give rise to explicit elliptic solutions of root system analogs of dynamical Yang–Baxter and reflection equations. Applications to quantum c-functions, basic hypergeometric functions, reflectionless difference operators and multivariable Baker–Akhiezer functions are discussed. |
|---|---|
| ISSN: | 0001-8708 1090-2082 |
| DOI: | 10.1016/j.aim.2013.09.016 |