Connection coefficients for basic Harish-Chandra series

Basic Harish-Chandra series are asymptotically free meromorphic solutions of the system of basic hypergeometric difference equations associated to root systems. The associated connection coefficients are explicitly computed in terms of Jacobi theta functions. We interpret the connection coefficients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in mathematics (New York. 1965) Jg. 250; S. 351 - 386
1. Verfasser: Stokman, Jasper V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 15.01.2014
Schlagworte:
ISSN:0001-8708, 1090-2082
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Basic Harish-Chandra series are asymptotically free meromorphic solutions of the system of basic hypergeometric difference equations associated to root systems. The associated connection coefficients are explicitly computed in terms of Jacobi theta functions. We interpret the connection coefficients as the transition functions for asymptotically free meromorphic solutions of Cherednikʼs root system analogs of the quantum Knizhnik–Zamolodchikov equations. They thus give rise to explicit elliptic solutions of root system analogs of dynamical Yang–Baxter and reflection equations. Applications to quantum c-functions, basic hypergeometric functions, reflectionless difference operators and multivariable Baker–Akhiezer functions are discussed.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2013.09.016