Extension results for slice regular functions of a quaternionic variable

In this paper we prove a new Representation Formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + y I can be recovered by the values of f at the points q + y J and q + y K for any choice of imaginary units I , J , K . This result allows us t...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in mathematics (New York. 1965) Ročník 222; číslo 5; s. 1793 - 1808
Hlavní autori: Colombo, Fabrizio, Gentili, Graziano, Sabadini, Irene, Struppa, Daniele
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.12.2009
Predmet:
ISSN:0001-8708, 1090-2082
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper we prove a new Representation Formula for slice regular functions, which shows that the value of a slice regular function f at a point q = x + y I can be recovered by the values of f at the points q + y J and q + y K for any choice of imaginary units I , J , K . This result allows us to extend the known properties of slice regular functions defined on balls centered on the real axis to a much larger class of domains, called axially symmetric domains. We show, in particular, that axially symmetric domains play, for slice regular functions, the role played by domains of holomorphy for holomorphic functions.
ISSN:0001-8708
1090-2082
DOI:10.1016/j.aim.2009.06.015