Uniformly bounded Lebesgue constants for scaled cardinal interpolation with Matérn kernels
For h>0 and positive integers m, d, such that m>d/2, we study non-stationary interpolation at the points of the scaled grid hZd via the Matérn kernel Φm,d—the fundamental solution of (1−Δ)m in Rd. We prove that the Lebesgue constants of the corresponding interpolation operators are uniformly b...
Uloženo v:
| Vydáno v: | Journal of approximation theory Ročník 278; s. 105740 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.06.2022
|
| Témata: | |
| ISSN: | 0021-9045, 1096-0430 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | For h>0 and positive integers m, d, such that m>d/2, we study non-stationary interpolation at the points of the scaled grid hZd via the Matérn kernel Φm,d—the fundamental solution of (1−Δ)m in Rd. We prove that the Lebesgue constants of the corresponding interpolation operators are uniformly bounded as h→0 and deduce the optimal L∞-convergence rate O(h2m) for the scaled interpolation scheme. We also provide convergence results for approximation with Matérn and related compactly supported polyharmonic kernels. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1016/j.jat.2022.105740 |