Uniformly bounded Lebesgue constants for scaled cardinal interpolation with Matérn kernels

For h>0 and positive integers m, d, such that m>d/2, we study non-stationary interpolation at the points of the scaled grid hZd via the Matérn kernel Φm,d—the fundamental solution of (1−Δ)m in Rd. We prove that the Lebesgue constants of the corresponding interpolation operators are uniformly b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of approximation theory Ročník 278; s. 105740
Hlavní autor: Bejancu, Aurelian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.06.2022
Témata:
ISSN:0021-9045, 1096-0430
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For h>0 and positive integers m, d, such that m>d/2, we study non-stationary interpolation at the points of the scaled grid hZd via the Matérn kernel Φm,d—the fundamental solution of (1−Δ)m in Rd. We prove that the Lebesgue constants of the corresponding interpolation operators are uniformly bounded as h→0 and deduce the optimal L∞-convergence rate O(h2m) for the scaled interpolation scheme. We also provide convergence results for approximation with Matérn and related compactly supported polyharmonic kernels.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2022.105740