Uniformly bounded Lebesgue constants for scaled cardinal interpolation with Matérn kernels
For h>0 and positive integers m, d, such that m>d/2, we study non-stationary interpolation at the points of the scaled grid hZd via the Matérn kernel Φm,d—the fundamental solution of (1−Δ)m in Rd. We prove that the Lebesgue constants of the corresponding interpolation operators are uniformly b...
Gespeichert in:
| Veröffentlicht in: | Journal of approximation theory Jg. 278; S. 105740 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Inc
01.06.2022
|
| Schlagworte: | |
| ISSN: | 0021-9045, 1096-0430 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | For h>0 and positive integers m, d, such that m>d/2, we study non-stationary interpolation at the points of the scaled grid hZd via the Matérn kernel Φm,d—the fundamental solution of (1−Δ)m in Rd. We prove that the Lebesgue constants of the corresponding interpolation operators are uniformly bounded as h→0 and deduce the optimal L∞-convergence rate O(h2m) for the scaled interpolation scheme. We also provide convergence results for approximation with Matérn and related compactly supported polyharmonic kernels. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1016/j.jat.2022.105740 |