Charge and spin coupling in copper compounds with hemilabile noninnocent ligands – Ambivalence in three dimensions

[Display omitted] •Coordinative ambivalence of CuI and CuII.•Conjugated noninnocent ligands with optional thioether or selenoether function.•Change of structure and spin coupling patterns through Cu–chalcogen contact interaction.•Experimental and computational analysis.•Three-dimensional ambivalence...

Full description

Saved in:
Bibliographic Details
Published in:Coordination chemistry reviews Vol. 355; pp. 173 - 179
Main Authors: Kaim, Wolfgang, Beyer, Katharina, Filippou, Vasileios, Záliš, Stanislav
Format: Journal Article
Language:English
Published: Elsevier B.V 15.01.2018
Subjects:
ISSN:0010-8545, 1873-3840
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •Coordinative ambivalence of CuI and CuII.•Conjugated noninnocent ligands with optional thioether or selenoether function.•Change of structure and spin coupling patterns through Cu–chalcogen contact interaction.•Experimental and computational analysis.•Three-dimensional ambivalence involving coordination (hemilability) and electron transfer (Cu, noninnocent ligand). Both the copper(I) and copper(II) states exhibit coordinative ambiguity as well as a typically increased coordination number after oxidation. This tendency can be used in dynamic redox systems, employing hemilabile innocent ligands. With noninnocent hemilabile ligands such as thioether- or selenoether-substituted o-semiquinone imines there is a complementary reactivity on the ligand side, viz., stepwise electron transfer and coordinative ambivalence. Some resulting combinations have been analyzed for two systems, involving one copper center and one camphorquinone imine or two o-benzoquinone imine components (Qn). Combining redox (CuI/II, Q0/−/2−) and coordinatively ambivalent metal and ligand components (hemilability) creates variable electronic situations which require experimental and theoretical analysis.
ISSN:0010-8545
1873-3840
DOI:10.1016/j.ccr.2017.08.006