A Novel Approach to Polynomial Approximation in Multidimensional Cylindrical Domains via Generalized Kronecker Product Bases
The Kronecker product has been commonly seen in various scientific fields to formulate higher-dimensional spaces from lower-dimensional ones. This paper presents a generalization of the Cannon–Kronecker product bases by introducing generalized Kronecker product bases of polynomials within an analyti...
Saved in:
| Published in: | Axioms Vol. 14; no. 10; p. 750 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
02.10.2025
|
| Subjects: | |
| ISSN: | 2075-1680, 2075-1680 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The Kronecker product has been commonly seen in various scientific fields to formulate higher-dimensional spaces from lower-dimensional ones. This paper presents a generalization of the Cannon–Kronecker product bases by introducing generalized Kronecker product bases of polynomials within an analytic framework. It investigates the convergence behavior of infinite series formed by these generalized products in various polycylindrical domains, including both open and closed configurations. The paper also delves into essential analytic properties such as order, type, and the Tρ-property to analyze the growth and structural characteristics of these bases. Moreover, the theoretical insights are applied to a range of classical special functions, notably Bernoulli, Euler, Gontcharoff, Bessel, and Chebyshev polynomials. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2075-1680 2075-1680 |
| DOI: | 10.3390/axioms14100750 |