Unsupervised feature selection using orthogonal encoder-decoder factorization

Unsupervised feature selection (UFS) is a fundamental task in machine learning and data analysis, aimed at identifying a subset of non-redundant and relevant features from a high-dimensional dataset. Embedded methods seamlessly integrate feature selection into model training, resulting in more effic...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information sciences Ročník 663; s. 120277
Hlavní autori: Mozafari, Maryam, Seyedi, Seyed Amjad, Pir Mohammadiani, Rojiar, Akhlaghian Tab, Fardin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.03.2024
Predmet:
ISSN:0020-0255, 1872-6291
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Unsupervised feature selection (UFS) is a fundamental task in machine learning and data analysis, aimed at identifying a subset of non-redundant and relevant features from a high-dimensional dataset. Embedded methods seamlessly integrate feature selection into model training, resulting in more efficient and interpretable models. Current embedded UFS methods primarily rely on self-representation or pseudo-supervised feature selection approaches to address redundancy and irrelevant feature issues, respectively. Nevertheless, there is currently a lack of research showcasing the fusion of these two approaches. This paper proposes the Orthogonal Encoder-Decoder factorization for unsupervised Feature Selection (OEDFS) model, combining the strengths of self-representation and pseudo-supervised approaches. This method draws inspiration from the self-representation properties of autoencoder architectures and leverages encoder and decoder factorizations to simulate a pseudo-supervised feature selection approach. To further enhance the part-based characteristics of factorization, orthogonality constraints and local structure preservation restrictions are incorporated into the objective function. The optimization process is based on the multiplicative update rule, ensuring efficient convergence. To assess the effectiveness of the proposed method, comprehensive experiments are conducted on 14 datasets and compare the results with eight state-of-the-art methods. The experimental results demonstrate the superior performance of the proposed approach in terms of UFS efficiency.
AbstractList Unsupervised feature selection (UFS) is a fundamental task in machine learning and data analysis, aimed at identifying a subset of non-redundant and relevant features from a high-dimensional dataset. Embedded methods seamlessly integrate feature selection into model training, resulting in more efficient and interpretable models. Current embedded UFS methods primarily rely on self-representation or pseudo-supervised feature selection approaches to address redundancy and irrelevant feature issues, respectively. Nevertheless, there is currently a lack of research showcasing the fusion of these two approaches. This paper proposes the Orthogonal Encoder-Decoder factorization for unsupervised Feature Selection (OEDFS) model, combining the strengths of self-representation and pseudo-supervised approaches. This method draws inspiration from the self-representation properties of autoencoder architectures and leverages encoder and decoder factorizations to simulate a pseudo-supervised feature selection approach. To further enhance the part-based characteristics of factorization, orthogonality constraints and local structure preservation restrictions are incorporated into the objective function. The optimization process is based on the multiplicative update rule, ensuring efficient convergence. To assess the effectiveness of the proposed method, comprehensive experiments are conducted on 14 datasets and compare the results with eight state-of-the-art methods. The experimental results demonstrate the superior performance of the proposed approach in terms of UFS efficiency.
ArticleNumber 120277
Author Pir Mohammadiani, Rojiar
Seyedi, Seyed Amjad
Mozafari, Maryam
Akhlaghian Tab, Fardin
Author_xml – sequence: 1
  givenname: Maryam
  surname: Mozafari
  fullname: Mozafari, Maryam
  email: m.mozafari@uok.ac.ir
– sequence: 2
  givenname: Seyed Amjad
  orcidid: 0000-0003-2718-7146
  surname: Seyedi
  fullname: Seyedi, Seyed Amjad
  email: amjadseyedi@uok.ac.ir
– sequence: 3
  givenname: Rojiar
  surname: Pir Mohammadiani
  fullname: Pir Mohammadiani, Rojiar
  email: r.pirmohamadiani@uok.ac.ir
– sequence: 4
  givenname: Fardin
  orcidid: 0000-0002-0300-9233
  surname: Akhlaghian Tab
  fullname: Akhlaghian Tab, Fardin
  email: f.akhlaghian@uok.ac.ir
BookMark eNp9kM9OwzAMhyM0JLbBA3DrC7Q4ado04oQm_klDXNg5SlN3ZCrJlHST4OnJNk4cdvHPB3-W_c3IxHmHhNxSKCjQ-m5TWBcLBowXNFUhLsiUNoLlNZN0QqYADHJgVXVFZjFuAICLup6St5WLuy2GvY3YZT3qcRcwizigGa132S5at858GD_92js9ZOiM7zDkHR4z67UZfbA_-jB-TS57PUS8-cs5WT09fixe8uX78-viYZkbJsWYSyOAc92AqXnT160UqRWV7kWDaYJrXbbIWiFYT6tSUy0BOskraFmlRSXLORGnvSb4GAP2ytjxeMEYtB0UBXWwojYqWVEHK-pkJZH0H7kN9kuH77PM_YnB9NLeYlDR2OQBOxuSJtV5e4b-BXQ5fdU
CitedBy_id crossref_primary_10_1016_j_asoc_2025_113080
crossref_primary_10_1016_j_knosys_2024_112902
crossref_primary_10_1016_j_patcog_2025_112211
crossref_primary_10_1016_j_physa_2024_129997
crossref_primary_10_1016_j_asoc_2024_112012
crossref_primary_10_1016_j_asoc_2025_113550
crossref_primary_10_2478_amns_2024_3120
crossref_primary_10_1016_j_neucom_2025_129557
crossref_primary_10_1016_j_engappai_2024_108641
crossref_primary_10_1016_j_engappai_2025_111264
crossref_primary_10_1016_j_compeleceng_2024_109362
crossref_primary_10_1016_j_ipm_2024_103923
crossref_primary_10_1109_TKDE_2024_3437364
Cites_doi 10.1016/j.ymeth.2016.08.014
10.1007/s11042-017-5381-7
10.1145/3136625
10.1109/TNNLS.2016.2521602
10.1109/TNNLS.2021.3083763
10.1016/j.neucom.2015.08.104
10.1016/j.patcog.2014.08.004
10.1016/j.patcog.2023.110179
10.1038/44565
10.1016/j.patcog.2021.107873
10.1016/j.ins.2021.11.068
10.1016/j.eswa.2017.11.053
10.1016/j.neucom.2018.04.001
10.1109/TCYB.2013.2272642
10.1016/j.patcog.2014.08.006
10.1016/j.engappai.2020.103855
10.1016/j.knosys.2018.01.009
10.1016/j.knosys.2023.110998
10.1109/TIP.2015.2479560
10.1109/TPAMI.2010.231
10.1109/TCYB.2020.2982445
10.1016/j.ins.2022.11.120
10.1016/j.neucom.2017.11.077
10.1016/j.eswa.2024.123198
10.1016/j.compeleceng.2013.11.024
10.1109/TCYB.2020.3034462
10.1109/ACCESS.2020.3010862
10.1007/s10462-019-09682-y
10.1109/TKDE.2020.2983396
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright_xml – notice: 2024 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2024.120277
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
ExternalDocumentID 10_1016_j_ins_2024_120277
S0020025524001907
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-9c7044a80c648f6b9780c75af78ec294aa3be2b772f153a1a900d9450b25a7593
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001184753500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:59:37 EST 2025
Sat Nov 29 07:29:04 EST 2025
Sat Mar 02 16:00:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pseudo-supervised learning
Self-representation learning
Unsupervised feature selection
Encoder-decoder model
Nonnegative matrix factorization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-9c7044a80c648f6b9780c75af78ec294aa3be2b772f153a1a900d9450b25a7593
ORCID 0000-0002-0300-9233
0000-0003-2718-7146
ParticipantIDs crossref_citationtrail_10_1016_j_ins_2024_120277
crossref_primary_10_1016_j_ins_2024_120277
elsevier_sciencedirect_doi_10_1016_j_ins_2024_120277
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationTitle Information sciences
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Li, Cheng, Wang, Morstatter, Trevino, Tang, Liu (br0040) 2017; 50
Wang, Pedrycz, Zhu, Zhu (br0220) 2015; 48
Cai, He, Han, Huang (br0280) 2011; 33
Seyedi, Ghodsi, Akhlaghian, Jalili, Moradi (br0440) 2019; vol. 101
Baldi (br0210) 2012; vol. 27
Li, Wang, Ruiz (br0020) 2022; 52
Zhao, Du, Wei, Fan (br0350) 2020; 8
Chandrashekar, Sahin (br0060) 2014; 40
Qian, Zhai (br0170) 2013
Wang, Bian, Nie, Li (br0370) 2022; 34
Du, Shen (br0190) 2015
Shajarian, Seyedi, Moradi (br0470) 2017
Tang, Liu, Li, Wang, Chen, Wang, Li (br0410) 2018; 145
Mahmoodi, Seyedi, Akhlaghian Tab, Abdollahpouri (br0480) 2023; 280
Lin, Guan, Chen, Zeng (br0360) 2022; 33
Solorio-Fernández, Carrasco-Ochoa, Martínez-Trinidad (br0070) 2020; 53
Yuan, You, He, Li (br0090) 2022; 52
Hajiveiseh, Seyedi, Akhlaghian Tab (br0490) 2024; 148
Zare, Parsa, Ghatee, Alizadeh (br0340) 2020
Bolón-Canedo, Sánchez-Maroño, Alonso-Betanzos (br0010) 2015
Shi, Du, Shen (br0310) 2014
Lee, Seung (br0230) 1999; 401
Li, Yang, Liu, Zhou, Lu (br0110) 2012
Hou, Nie, Yi, Wu (br0180) 2011
Tang, Zhu, Chen, Wang, Liu, Tian (br0390) 2018; 96
Shang, Wang, Shang, Jiao, Li (br0260) 2021; 114
Zhu, Li, Zhang, Ju, Wu (br0330) 2017; 28
Yuan, Oja (br0420) 2005
Parsa, Zare, Ghatee (br0150) 2020; 95
Li, Tang (br0160) 2015; 24
Cai, Luo, Wang, Yang (br0030) 2018; 300
Seyedi, Akhlaghian Tab, Lotfi, Salahian, Chavoshinejad (br0430) 2023; 621
Abdollahi, Amjad Seyedi, Reza Noorimehr (br0450) 2020
Wang, Tang, Liu (br0320) 2015
Faraji, Seyedi, Akhlaghian Tab, Mahmoodi (br0500) 2024; 246
Lu, Li, Dong (br0380) 2018; 301
Wang, Wang, Chang (br0050) 2016; 111
Luo, Zheng, Li, Chen, Huang, Peng (br0270) 2022; 586
Cai, Zhang, He (br0120) 2010
Lei, Zhu (br0400) 2018; 77
Wang, Yao, Zhao (br0200) 2016; 184
He, Cai, Niyogi (br0080) 2005; vol. 18
Zhu, Zuo, Zhang, Hu, Shiu (br0100) 2015; 48
Zhao, Wang, Liu (br0300) 2010
Sun, Shen, Gao, Ouyang, Cheng (br0250) 2017
Hou, Nie, Li, Yi, Wu (br0140) 2014; 44
Yang, Shen, Ma, Huang, Zhou (br0290) 2011; vol. Volume Two
Ding, Li, Peng, Park (br0240) 2006
Fan, Chang, Zhang, Wang, Du (br0130) 2017
Seyedi, Moradi, Tab (br0460) 2017
Fan (10.1016/j.ins.2024.120277_br0130) 2017
Hajiveiseh (10.1016/j.ins.2024.120277_br0490) 2024; 148
Yang (10.1016/j.ins.2024.120277_br0290) 2011; vol. Volume Two
Hou (10.1016/j.ins.2024.120277_br0140) 2014; 44
Li (10.1016/j.ins.2024.120277_br0110) 2012
Chandrashekar (10.1016/j.ins.2024.120277_br0060) 2014; 40
Wang (10.1016/j.ins.2024.120277_br0220) 2015; 48
Shang (10.1016/j.ins.2024.120277_br0260) 2021; 114
Tang (10.1016/j.ins.2024.120277_br0390) 2018; 96
Seyedi (10.1016/j.ins.2024.120277_br0460) 2017
Li (10.1016/j.ins.2024.120277_br0040) 2017; 50
He (10.1016/j.ins.2024.120277_br0080) 2005; vol. 18
Zhu (10.1016/j.ins.2024.120277_br0100) 2015; 48
Li (10.1016/j.ins.2024.120277_br0020) 2022; 52
Yuan (10.1016/j.ins.2024.120277_br0420) 2005
Shajarian (10.1016/j.ins.2024.120277_br0470) 2017
Parsa (10.1016/j.ins.2024.120277_br0150) 2020; 95
Zhao (10.1016/j.ins.2024.120277_br0300) 2010
Lei (10.1016/j.ins.2024.120277_br0400) 2018; 77
Abdollahi (10.1016/j.ins.2024.120277_br0450) 2020
Bolón-Canedo (10.1016/j.ins.2024.120277_br0010) 2015
Wang (10.1016/j.ins.2024.120277_br0370) 2022; 34
Yuan (10.1016/j.ins.2024.120277_br0090) 2022; 52
Qian (10.1016/j.ins.2024.120277_br0170) 2013
Cai (10.1016/j.ins.2024.120277_br0030) 2018; 300
Mahmoodi (10.1016/j.ins.2024.120277_br0480) 2023; 280
Faraji (10.1016/j.ins.2024.120277_br0500) 2024; 246
Du (10.1016/j.ins.2024.120277_br0190) 2015
Solorio-Fernández (10.1016/j.ins.2024.120277_br0070) 2020; 53
Wang (10.1016/j.ins.2024.120277_br0320) 2015
Wang (10.1016/j.ins.2024.120277_br0050) 2016; 111
Shi (10.1016/j.ins.2024.120277_br0310) 2014
Sun (10.1016/j.ins.2024.120277_br0250) 2017
Lu (10.1016/j.ins.2024.120277_br0380) 2018; 301
Ding (10.1016/j.ins.2024.120277_br0240) 2006
Seyedi (10.1016/j.ins.2024.120277_br0430) 2023; 621
Zare (10.1016/j.ins.2024.120277_br0340) 2020
Lee (10.1016/j.ins.2024.120277_br0230) 1999; 401
Wang (10.1016/j.ins.2024.120277_br0200) 2016; 184
Cai (10.1016/j.ins.2024.120277_br0120) 2010
Zhu (10.1016/j.ins.2024.120277_br0330) 2017; 28
Baldi (10.1016/j.ins.2024.120277_br0210) 2012; vol. 27
Lin (10.1016/j.ins.2024.120277_br0360) 2022; 33
Tang (10.1016/j.ins.2024.120277_br0410) 2018; 145
Luo (10.1016/j.ins.2024.120277_br0270) 2022; 586
Seyedi (10.1016/j.ins.2024.120277_br0440) 2019; vol. 101
Cai (10.1016/j.ins.2024.120277_br0280) 2011; 33
Zhao (10.1016/j.ins.2024.120277_br0350) 2020; 8
Li (10.1016/j.ins.2024.120277_br0160) 2015; 24
Hou (10.1016/j.ins.2024.120277_br0180) 2011
References_xml – volume: vol. 18
  year: 2005
  ident: br0080
  article-title: Laplacian Score for Feature Selection
  publication-title: Advances in Neural Information Processing Systems
– volume: 148
  year: 2024
  ident: br0490
  article-title: Deep asymmetric nonnegative matrix factorization for graph clustering
  publication-title: Pattern Recognit.
– volume: 111
  start-page: 21
  year: 2016
  end-page: 31
  ident: br0050
  article-title: Feature selection methods for big data bioinformatics: a survey from the search perspective
  publication-title: Methods
– volume: 48
  start-page: 10
  year: 2015
  end-page: 19
  ident: br0220
  article-title: Subspace learning for unsupervised feature selection via matrix factorization
  publication-title: Pattern Recognit.
– volume: 44
  start-page: 793
  year: 2014
  end-page: 804
  ident: br0140
  article-title: Joint embedding learning and sparse regression: a framework for unsupervised feature selection
  publication-title: IEEE Trans. Cybern.
– volume: vol. 101
  start-page: 790
  year: 2019
  end-page: 805
  ident: br0440
  article-title: Self-paced multi-label learning with diversity
  publication-title: Proceedings of the Eleventh Asian Conference on Machine Learning
– volume: 52
  start-page: 5522
  year: 2022
  end-page: 5534
  ident: br0090
  article-title: Convex non-negative matrix factorization with adaptive graph for unsupervised feature selection
  publication-title: IEEE Trans. Cybern.
– volume: 95
  year: 2020
  ident: br0150
  article-title: Unsupervised feature selection based on adaptive similarity learning and subspace clustering
  publication-title: Eng. Appl. Artif. Intell.
– volume: 300
  start-page: 70
  year: 2018
  end-page: 79
  ident: br0030
  article-title: Feature selection in machine learning: a new perspective
  publication-title: Neurocomputing
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: br0230
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 33
  start-page: 1548
  year: 2011
  end-page: 1560
  ident: br0280
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 133128
  year: 2020
  end-page: 133143
  ident: br0350
  article-title: Local sensitive dual concept factorization for unsupervised feature selection
  publication-title: IEEE Access
– volume: 33
  start-page: 6881
  year: 2022
  end-page: 6892
  ident: br0360
  article-title: Unsupervised feature selection via orthogonal basis clustering and local structure preserving
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 213
  year: 2017
  end-page: 218
  ident: br0460
  article-title: A weakly-supervised factorization method with dynamic graph embedding
  publication-title: 2017 Artificial Intelligence and Signal Processing Conference (AISP)
– start-page: 333
  year: 2010
  end-page: 342
  ident: br0120
  article-title: Unsupervised feature selection for multi-cluster data
  publication-title: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 77
  start-page: 29605
  year: 2018
  end-page: 29622
  ident: br0400
  article-title: Unsupervised feature selection via local structure learning and sparse learning
  publication-title: Multimed. Tools Appl.
– volume: 50
  start-page: 1
  year: 2017
  end-page: 45
  ident: br0040
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
– volume: 280
  year: 2023
  ident: br0480
  article-title: Link prediction by adversarial nonnegative matrix factorization
  publication-title: Knowl.-Based Syst.
– year: 2015
  ident: br0010
  article-title: Feature Selection for High-Dimensional Data
– start-page: 977
  year: 2014
  end-page: 982
  ident: br0310
  article-title: Robust spectral learning for unsupervised feature selection
  publication-title: 2014 IEEE International Conference on Data Mining
– start-page: 673
  year: 2010
  end-page: 678
  ident: br0300
  article-title: Efficient spectral feature selection with minimum redundancy
  publication-title: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence
– volume: 34
  start-page: 942
  year: 2022
  end-page: 953
  ident: br0370
  article-title: Unsupervised discriminative projection for feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 145
  start-page: 109
  year: 2018
  end-page: 120
  ident: br0410
  article-title: Robust unsupervised feature selection via dual self-representation and manifold regularization
  publication-title: Knowl.-Based Syst.
– volume: 28
  start-page: 1263
  year: 2017
  end-page: 1275
  ident: br0330
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: vol. Volume Two
  start-page: 1589
  year: 2011
  end-page: 1594
  ident: br0290
  article-title: L2, 1-norm regularized discriminative feature selection for unsupervised learning
  publication-title: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence
– volume: vol. 27
  start-page: 37
  year: 2012
  end-page: 49
  ident: br0210
  article-title: Autoencoders, unsupervised learning, and deep architectures
  publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning
– start-page: 2241
  year: 2017
  end-page: 2246
  ident: br0470
  article-title: A clustering-based matrix factorization method to improve the accuracy of recommendation systems
  publication-title: 2017 Iranian Conference on Electrical Engineering (ICEE)
– volume: 246
  year: 2024
  ident: br0500
  article-title: Multi-label feature selection with global and local label correlation
  publication-title: Expert Syst. Appl.
– start-page: 1026
  year: 2012
  end-page: 1032
  ident: br0110
  article-title: Unsupervised feature selection using nonnegative spectral analysis
  publication-title: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence
– volume: 621
  start-page: 562
  year: 2023
  end-page: 579
  ident: br0430
  article-title: Elastic adversarial deep nonnegative matrix factorization for matrix completion
  publication-title: Inf. Sci.
– start-page: 1621
  year: 2013
  end-page: 1627
  ident: br0170
  article-title: Robust unsupervised feature selection
  publication-title: Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence
– volume: 53
  start-page: 907
  year: 2020
  end-page: 948
  ident: br0070
  article-title: A review of unsupervised feature selection methods
  publication-title: Artif. Intell. Rev.
– start-page: 1646
  year: 2017
  end-page: 1653
  ident: br0130
  article-title: Top-k supervise feature selection via admm for integer programming
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: br0060
  article-title: A survey on feature selection methods
  publication-title: 40th-Year Commemorative Issue
– volume: 301
  start-page: 36
  year: 2018
  end-page: 45
  ident: br0380
  article-title: Structure preserving unsupervised feature selection
  publication-title: Neurocomputing
– start-page: 323
  year: 2020
  end-page: 328
  ident: br0450
  article-title: Asymmetric semi-nonnegative matrix factorization for directed graph clustering
  publication-title: 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE)
– start-page: 1324
  year: 2011
  end-page: 1329
  ident: br0180
  article-title: Feature selection via joint embedding learning and sparse regression
  publication-title: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Two
– volume: 52
  start-page: 1642
  year: 2022
  end-page: 1660
  ident: br0020
  article-title: A survey on sparse learning models for feature selection
  publication-title: IEEE Trans. Cybern.
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: br0200
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
– start-page: 597
  year: 2017
  end-page: 606
  ident: br0250
  article-title: A non-negative symmetric encoder-decoder approach for community detection
  publication-title: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
– volume: 48
  start-page: 438
  year: 2015
  end-page: 446
  ident: br0100
  article-title: Unsupervised feature selection by regularized self-representation
  publication-title: Pattern Recognit.
– start-page: 50
  year: 2020
  end-page: 55
  ident: br0340
  article-title: Similarity preserving unsupervised feature selection based on sparse learning
  publication-title: 2020 10th International Symposium on Telecommunications (IST)
– start-page: 209
  year: 2015
  end-page: 218
  ident: br0190
  article-title: Unsupervised feature selection with adaptive structure learning
  publication-title: Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 114
  year: 2021
  ident: br0260
  article-title: Dual space latent representation learning for unsupervised feature selection
  publication-title: Pattern Recognit.
– volume: 96
  start-page: 64
  year: 2018
  end-page: 76
  ident: br0390
  article-title: Robust graph regularized unsupervised feature selection
  publication-title: Expert Syst. Appl.
– volume: 586
  start-page: 662
  year: 2022
  end-page: 675
  ident: br0270
  article-title: Orthogonally constrained matrix factorization for robust unsupervised feature selection with local preserving
  publication-title: Inf. Sci.
– start-page: 126
  year: 2006
  end-page: 135
  ident: br0240
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– start-page: 333
  year: 2005
  end-page: 342
  ident: br0420
  article-title: Projective nonnegative matrix factorization for image compression and feature extraction
  publication-title: Image Analysis
– volume: 24
  start-page: 5343
  year: 2015
  end-page: 5355
  ident: br0160
  article-title: Unsupervised feature selection via nonnegative spectral analysis and redundancy control
  publication-title: IEEE Trans. Image Process.
– start-page: 470
  year: 2015
  end-page: 476
  ident: br0320
  article-title: Embedded unsupervised feature selection
  publication-title: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
– volume: 111
  start-page: 21
  year: 2016
  ident: 10.1016/j.ins.2024.120277_br0050
  article-title: Feature selection methods for big data bioinformatics: a survey from the search perspective
  publication-title: Methods
  doi: 10.1016/j.ymeth.2016.08.014
– volume: 77
  start-page: 29605
  issue: 22
  year: 2018
  ident: 10.1016/j.ins.2024.120277_br0400
  article-title: Unsupervised feature selection via local structure learning and sparse learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-5381-7
– start-page: 126
  year: 2006
  ident: 10.1016/j.ins.2024.120277_br0240
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
– volume: 50
  start-page: 1
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2024.120277_br0040
  article-title: Feature selection: a data perspective
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3136625
– volume: 28
  start-page: 1263
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2024.120277_br0330
  article-title: Robust joint graph sparse coding for unsupervised spectral feature selection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2521602
– volume: 33
  start-page: 6881
  issue: 11
  year: 2022
  ident: 10.1016/j.ins.2024.120277_br0360
  article-title: Unsupervised feature selection via orthogonal basis clustering and local structure preserving
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3083763
– volume: 184
  start-page: 232
  year: 2016
  ident: 10.1016/j.ins.2024.120277_br0200
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 48
  start-page: 10
  issue: 1
  year: 2015
  ident: 10.1016/j.ins.2024.120277_br0220
  article-title: Subspace learning for unsupervised feature selection via matrix factorization
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.08.004
– volume: 148
  year: 2024
  ident: 10.1016/j.ins.2024.120277_br0490
  article-title: Deep asymmetric nonnegative matrix factorization for graph clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.110179
– start-page: 1026
  year: 2012
  ident: 10.1016/j.ins.2024.120277_br0110
  article-title: Unsupervised feature selection using nonnegative spectral analysis
– volume: vol. 27
  start-page: 37
  year: 2012
  ident: 10.1016/j.ins.2024.120277_br0210
  article-title: Autoencoders, unsupervised learning, and deep architectures
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.ins.2024.120277_br0230
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 114
  year: 2021
  ident: 10.1016/j.ins.2024.120277_br0260
  article-title: Dual space latent representation learning for unsupervised feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107873
– volume: 586
  start-page: 662
  year: 2022
  ident: 10.1016/j.ins.2024.120277_br0270
  article-title: Orthogonally constrained matrix factorization for robust unsupervised feature selection with local preserving
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.068
– start-page: 673
  year: 2010
  ident: 10.1016/j.ins.2024.120277_br0300
  article-title: Efficient spectral feature selection with minimum redundancy
– volume: 96
  start-page: 64
  year: 2018
  ident: 10.1016/j.ins.2024.120277_br0390
  article-title: Robust graph regularized unsupervised feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.11.053
– volume: 301
  start-page: 36
  year: 2018
  ident: 10.1016/j.ins.2024.120277_br0380
  article-title: Structure preserving unsupervised feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.001
– start-page: 209
  year: 2015
  ident: 10.1016/j.ins.2024.120277_br0190
  article-title: Unsupervised feature selection with adaptive structure learning
– start-page: 470
  year: 2015
  ident: 10.1016/j.ins.2024.120277_br0320
  article-title: Embedded unsupervised feature selection
– start-page: 50
  year: 2020
  ident: 10.1016/j.ins.2024.120277_br0340
  article-title: Similarity preserving unsupervised feature selection based on sparse learning
– volume: 44
  start-page: 793
  issue: 6
  year: 2014
  ident: 10.1016/j.ins.2024.120277_br0140
  article-title: Joint embedding learning and sparse regression: a framework for unsupervised feature selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2272642
– start-page: 2241
  year: 2017
  ident: 10.1016/j.ins.2024.120277_br0470
  article-title: A clustering-based matrix factorization method to improve the accuracy of recommendation systems
– volume: 48
  start-page: 438
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2024.120277_br0100
  article-title: Unsupervised feature selection by regularized self-representation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.08.006
– volume: 95
  year: 2020
  ident: 10.1016/j.ins.2024.120277_br0150
  article-title: Unsupervised feature selection based on adaptive similarity learning and subspace clustering
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103855
– start-page: 977
  year: 2014
  ident: 10.1016/j.ins.2024.120277_br0310
  article-title: Robust spectral learning for unsupervised feature selection
– volume: vol. 101
  start-page: 790
  year: 2019
  ident: 10.1016/j.ins.2024.120277_br0440
  article-title: Self-paced multi-label learning with diversity
– start-page: 333
  year: 2005
  ident: 10.1016/j.ins.2024.120277_br0420
  article-title: Projective nonnegative matrix factorization for image compression and feature extraction
– volume: 145
  start-page: 109
  year: 2018
  ident: 10.1016/j.ins.2024.120277_br0410
  article-title: Robust unsupervised feature selection via dual self-representation and manifold regularization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.01.009
– volume: 280
  year: 2023
  ident: 10.1016/j.ins.2024.120277_br0480
  article-title: Link prediction by adversarial nonnegative matrix factorization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2023.110998
– start-page: 333
  year: 2010
  ident: 10.1016/j.ins.2024.120277_br0120
  article-title: Unsupervised feature selection for multi-cluster data
– start-page: 1646
  year: 2017
  ident: 10.1016/j.ins.2024.120277_br0130
  article-title: Top-k supervise feature selection via admm for integer programming
– volume: 24
  start-page: 5343
  issue: 12
  year: 2015
  ident: 10.1016/j.ins.2024.120277_br0160
  article-title: Unsupervised feature selection via nonnegative spectral analysis and redundancy control
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2479560
– year: 2015
  ident: 10.1016/j.ins.2024.120277_br0010
– volume: 33
  start-page: 1548
  issue: 8
  year: 2011
  ident: 10.1016/j.ins.2024.120277_br0280
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.231
– volume: 52
  start-page: 1642
  issue: 3
  year: 2022
  ident: 10.1016/j.ins.2024.120277_br0020
  article-title: A survey on sparse learning models for feature selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2982445
– volume: 621
  start-page: 562
  year: 2023
  ident: 10.1016/j.ins.2024.120277_br0430
  article-title: Elastic adversarial deep nonnegative matrix factorization for matrix completion
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.11.120
– volume: 300
  start-page: 70
  year: 2018
  ident: 10.1016/j.ins.2024.120277_br0030
  article-title: Feature selection in machine learning: a new perspective
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.11.077
– volume: vol. 18
  year: 2005
  ident: 10.1016/j.ins.2024.120277_br0080
  article-title: Laplacian Score for Feature Selection
– start-page: 323
  year: 2020
  ident: 10.1016/j.ins.2024.120277_br0450
  article-title: Asymmetric semi-nonnegative matrix factorization for directed graph clustering
– volume: 246
  year: 2024
  ident: 10.1016/j.ins.2024.120277_br0500
  article-title: Multi-label feature selection with global and local label correlation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.123198
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.ins.2024.120277_br0060
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 52
  start-page: 5522
  issue: 6
  year: 2022
  ident: 10.1016/j.ins.2024.120277_br0090
  article-title: Convex non-negative matrix factorization with adaptive graph for unsupervised feature selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.3034462
– start-page: 1324
  year: 2011
  ident: 10.1016/j.ins.2024.120277_br0180
  article-title: Feature selection via joint embedding learning and sparse regression
– start-page: 597
  year: 2017
  ident: 10.1016/j.ins.2024.120277_br0250
  article-title: A non-negative symmetric encoder-decoder approach for community detection
– volume: 8
  start-page: 133128
  year: 2020
  ident: 10.1016/j.ins.2024.120277_br0350
  article-title: Local sensitive dual concept factorization for unsupervised feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3010862
– volume: 53
  start-page: 907
  issue: 2
  year: 2020
  ident: 10.1016/j.ins.2024.120277_br0070
  article-title: A review of unsupervised feature selection methods
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09682-y
– volume: vol. Volume Two
  start-page: 1589
  year: 2011
  ident: 10.1016/j.ins.2024.120277_br0290
  article-title: L2, 1-norm regularized discriminative feature selection for unsupervised learning
– start-page: 213
  year: 2017
  ident: 10.1016/j.ins.2024.120277_br0460
  article-title: A weakly-supervised factorization method with dynamic graph embedding
– volume: 34
  start-page: 942
  issue: 2
  year: 2022
  ident: 10.1016/j.ins.2024.120277_br0370
  article-title: Unsupervised discriminative projection for feature selection
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2983396
– start-page: 1621
  year: 2013
  ident: 10.1016/j.ins.2024.120277_br0170
  article-title: Robust unsupervised feature selection
SSID ssj0004766
Score 2.4892538
Snippet Unsupervised feature selection (UFS) is a fundamental task in machine learning and data analysis, aimed at identifying a subset of non-redundant and relevant...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 120277
SubjectTerms Encoder-decoder model
Nonnegative matrix factorization
Pseudo-supervised learning
Self-representation learning
Unsupervised feature selection
Title Unsupervised feature selection using orthogonal encoder-decoder factorization
URI https://dx.doi.org/10.1016/j.ins.2024.120277
Volume 663
WOSCitedRecordID wos001184753500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZKxwEOCAaIAUM-IA5MQWnixPGxQpsA0YlDJ_UWvTj22tKmVdpO20776Tw7TppVG2IHLmmUOm6U7-vn5-f3ngn56IdaBnkUe1pm0mNoEaEOBrEX-wq0YJpDZhOFf_LT02Q0Er86nZs6F-ZixosiubwUy_8KNV5DsE3q7APgbjrFC3iOoOMRYcfjPwF_Vqw2S6MAK7QltbKFO49WdrsbA_XGOgfMas3i3HoBTSXLXJVeruyn24HHpWe2bVeXuWR7cQNnY5APFtegocpaH0B5BfPGdaOucHy0TlZzdtSfTyFvBHlSoqqMYT63JRImVaz3dAJNyHD_93gG52MjQ0Owa0cnhtNF21sRsG24VpM94HtmHtNW4NhpXKWhPeOP4XfKe-VpmOKcxFRaD9iXbdvbpbR3hrgm8LCOaZum2EVqukirLh6RvYBHIumSvf7349GPbW4tr9a76-euV8ZtjODOc9xt27TsleFz8sxNNGi_IsgL0lHFPnnaKj-5Tw5d0gr9RFvYUif3L8mgTSXqqEQbKlFLJbqlEt2hEr1FpVfk7OR4-PWb57bf8GQg-NoTkvuMQeLLmCU6zkytKskj0DxR2IIBhJkKMpyeaRw2oQfC93PBIj8LIsB3Gb4m3WJRqDeEJtBTOhBoTWrJuAzxawkikyrs6TyK-AHx6xeXSleb3myRMkvvBeyAfG5uWVaFWf7WmNVopO4PUlmMKTLr_tvePuQ33pEnW8K_J911uVGH5LG8WE9W5QdHqz_vqJz_
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+feature+selection+using+orthogonal+encoder-decoder+factorization&rft.jtitle=Information+sciences&rft.au=Mozafari%2C+Maryam&rft.au=Seyedi%2C+Seyed+Amjad&rft.au=Pir+Mohammadiani%2C+Rojiar&rft.au=Akhlaghian+Tab%2C+Fardin&rft.date=2024-03-01&rft.issn=0020-0255&rft.volume=663&rft.spage=120277&rft_id=info:doi/10.1016%2Fj.ins.2024.120277&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2024_120277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon