An efficient parallel algorithm for mining weighted clickstream patterns
•We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent clickstream patterns.•We experiment on various datasets to illustrate the algorithm’s performance and scalability. In the Internet age, analyzing...
Saved in:
| Published in: | Information sciences Vol. 582; pp. 349 - 368 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Inc
01.01.2022
|
| Subjects: | |
| ISSN: | 0020-0255, 1872-6291 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent clickstream patterns.•We experiment on various datasets to illustrate the algorithm’s performance and scalability.
In the Internet age, analyzing the behavior of online users can help webstore owners understand customers’ interests. Insights from such analysis can be used to improve both user experience and website design. A prominent task for online behavior analysis is clickstream mining, which consists of identifying customer browsing patterns that reveal how users interact with websites. Recently, this task was extended to consider weights to find more impactful patterns. However, most algorithms for mining weighted clickstream patterns are serial algorithms, which are sequentially executed from the start to the end on one running thread. In real life, data is often very large, and serial algorithms can have long runtimes as they do not fully take advantage of the parallelism capabilities of modern multi-core CPUs. To address this limitation, this paper presents two parallel algorithms named DPCompact-SPADE (Depth load balancing Parallel Compact-SPADE) and APCompact-SPADE (Adaptive Parallel Compact-SPADE) for weighted clickstream pattern mining. Experiments on various datasets show that the proposed parallel algorithm is efficient, and outperforms state-of-the-art serial algorithms in terms of runtime, memory consumption, and scalability. |
|---|---|
| AbstractList | •We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent clickstream patterns.•We experiment on various datasets to illustrate the algorithm’s performance and scalability.
In the Internet age, analyzing the behavior of online users can help webstore owners understand customers’ interests. Insights from such analysis can be used to improve both user experience and website design. A prominent task for online behavior analysis is clickstream mining, which consists of identifying customer browsing patterns that reveal how users interact with websites. Recently, this task was extended to consider weights to find more impactful patterns. However, most algorithms for mining weighted clickstream patterns are serial algorithms, which are sequentially executed from the start to the end on one running thread. In real life, data is often very large, and serial algorithms can have long runtimes as they do not fully take advantage of the parallelism capabilities of modern multi-core CPUs. To address this limitation, this paper presents two parallel algorithms named DPCompact-SPADE (Depth load balancing Parallel Compact-SPADE) and APCompact-SPADE (Adaptive Parallel Compact-SPADE) for weighted clickstream pattern mining. Experiments on various datasets show that the proposed parallel algorithm is efficient, and outperforms state-of-the-art serial algorithms in terms of runtime, memory consumption, and scalability. |
| Author | Vo, Bay Yun, Unil Huynh, Huy M. Oplatková, Zuzana Komínková Nguyen, Loan T.T. Fournier-Viger, Philippe |
| Author_xml | – sequence: 1 givenname: Huy M. surname: Huynh fullname: Huynh, Huy M. email: huynh@utb.cz organization: Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, Zlín 76001, Czech Republic – sequence: 2 givenname: Loan T.T. orcidid: 0000-0001-6440-6462 surname: Nguyen fullname: Nguyen, Loan T.T. email: nttloan@hcmiu.edu.vn organization: School of Computer Science and Engineering, International University, Ho Chi Minh City 700000, Viet Nam – sequence: 3 givenname: Bay surname: Vo fullname: Vo, Bay email: vd.bay@hutech.edu.vn organization: Faculty of Information Technology, Ho Chi Minh City University of Technology (HUTECH), Ho Chi Minh City 700000, Vietnam – sequence: 4 givenname: Zuzana Komínková surname: Oplatková fullname: Oplatková, Zuzana Komínková email: oplatkova@utb.cz organization: Faculty of Applied Informatics, Tomas Bata University in Zlín, Nám. T.G. Masaryka 5555, Zlín 76001, Czech Republic – sequence: 5 givenname: Philippe orcidid: 0000-0002-7680-9899 surname: Fournier-Viger fullname: Fournier-Viger, Philippe email: philfv@hit.edu.cn organization: School of Humanities and Social Sciences, Harbin Institute of Technology, Shenzhen 518055, China – sequence: 6 givenname: Unil orcidid: 0000-0002-3720-0861 surname: Yun fullname: Yun, Unil email: yunei@sejong.ac.kr organization: Department of Computer Engineering, Sejong University, Seoul 05006, Republic of Korea |
| BookMark | eNp90LFOwzAQgGELFYlSeAC2vEDCndPYjpiqCihSJRaYLeNcWpfEqWwLxNuTqEwMnW44fSfdf81mfvDE2B1CgYDi_lA4HwsOHAtQBUi4YHNUkueC1zhjcwAOOfCqumLXMR4AYCmFmLPNymfUts468ik7mmC6jrrMdLshuLTvs3YIWe-887vsm9xun6jJbOfsZ0yBTD-SlCj4eMMuW9NFuv2bC_b-9Pi23uTb1-eX9WqbW17LlNe2FBbVR1VZgaWSSjWIZcORlLR2aagGMlQuObY1n3YC0SjRVE0pJam2XDB5umvDEGOgVluXTHKDT8G4TiPoKYg-6DGInoJoUHoMMkr8J4_B9Sb8nDUPJ0PjS1-Ogo5TKUuNC2STbgZ3Rv8ChC17kQ |
| CitedBy_id | crossref_primary_10_1016_j_teler_2024_100125 crossref_primary_10_1016_j_knosys_2024_111449 crossref_primary_10_1145_3716390 crossref_primary_10_1016_j_knosys_2024_112713 crossref_primary_10_1002_widm_1566 crossref_primary_10_1007_s10660_022_09543_x crossref_primary_10_1016_j_ins_2023_119924 crossref_primary_10_1109_ACCESS_2021_3131577 crossref_primary_10_1007_s10489_022_03699_7 crossref_primary_10_1109_TSC_2025_3536359 crossref_primary_10_1016_j_ins_2022_07_037 crossref_primary_10_3390_s22249626 crossref_primary_10_1016_j_knosys_2021_107946 crossref_primary_10_1016_j_knosys_2023_110441 crossref_primary_10_1109_TSC_2023_3294945 |
| Cites_doi | 10.1016/j.knosys.2019.105241 10.1016/j.eswa.2009.07.072 10.1016/j.eswa.2019.112993 10.1007/s10115-018-1161-6 10.1007/s10489-018-1182-6 10.1016/j.future.2020.01.034 10.1142/S0218488517500052 10.1007/s10489-020-01664-w 10.1016/j.ins.2018.07.020 10.1016/j.knosys.2013.10.011 10.1007/s10489-016-0859-y 10.1016/j.knosys.2019.105076 10.1109/TKDE.2016.2515622 10.1145/3314107 10.1109/TCYB.2019.2896267 10.1016/j.eswa.2017.05.021 10.1109/TKDE.2013.124 10.1007/s11280-018-0566-1 10.1016/j.inffus.2021.05.011 10.1145/3363571 10.1023/A:1007652502315 10.1016/j.eswa.2017.10.025 10.1016/j.jcss.2009.05.008 10.1016/j.ins.2018.08.009 10.1007/s10618-016-0467-9 10.1016/j.eswa.2012.08.065 10.4218/etrij.10.1510.0066 10.1016/j.ins.2018.05.031 10.1016/j.asoc.2021.107422 10.1109/ACCESS.2019.2939937 10.1006/jpdc.2000.1695 10.1016/j.ins.2007.03.018 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. |
| Copyright_xml | – notice: 2021 Elsevier Inc. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ins.2021.08.070 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Library & Information Science |
| EISSN | 1872-6291 |
| EndPage | 368 |
| ExternalDocumentID | 10_1016_j_ins_2021_08_070 S0020025521008781 |
| GroupedDBID | --K --M --Z -~X .DC .~1 0R~ 1B1 1OL 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LG9 LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SST SSV SSW SSZ T5K TN5 TWZ UHS WH7 WUQ XPP YYP ZMT ZY4 ~02 ~G- 77I 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-9c36c18b55c6138788d113d21e87cc4ae90eae3421f928d11611a86d5d377e8f3 |
| ISICitedReferencesCount | 18 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000705073700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0255 |
| IngestDate | Sat Nov 29 07:25:19 EST 2025 Tue Nov 18 20:53:00 EST 2025 Fri Feb 23 02:44:46 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Frequent pattern mining Parallelism Weighted clickstream patterns |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-9c36c18b55c6138788d113d21e87cc4ae90eae3421f928d11611a86d5d377e8f3 |
| ORCID | 0000-0001-6440-6462 0000-0002-7680-9899 0000-0002-3720-0861 |
| PageCount | 20 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ins_2021_08_070 crossref_primary_10_1016_j_ins_2021_08_070 elsevier_sciencedirect_doi_10_1016_j_ins_2021_08_070 |
| PublicationCentury | 2000 |
| PublicationDate | January 2022 2022-01-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information sciences |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Ting, Kimble, Kudenko (b0175) 2005 Van, Yoshitaka, Le (b0185) 2018; 48 Yu, Li, Liu (b0210) 2019; 22 Yun (b0215) 2007; 177 Zaki (b0230) 2001; 61 Demiriz (b0050) 2002 Petitjean, Li, Tatti, Webb (b0165) 2016; 30 Riondato, DeBrabant, Fonseca, Upfal (b0170) 2012 Agrawal, Imieliński, Swami (b0005) 1993 Andrzejewski, Boinski (b0025) 2018; 93 Fournier-Viger, Lin, Gomariz, Gueniche, Soltani, Deng, Lam (b0075) 2016 Lin, Djenouri, Srivastava, Yun, Fournier-Viger (b0150) 2021; 108 Agrawal, Srikant (b0015) 1996 Djenouri, Belhadi, Fournier-Viger, Fujita (b0055) 2018; 459 Djenouri, Djenouri, Belhadi, Cano (b0060) 2019; 496 Kim, Yi (b0130) 2019; 7 Gan, Lin, Fournier-Viger, Chao, Yu (b0085) 2019; 13 Gouda, Hassaan, Zaki (b0095) 2010; 76 Agrawal, Srikant (b0010) 1995 Ahmed, Tanbeer, Jeong (b0020) 2010; 32 Pei, Han, Chen, Hsu, Mortazavi-Asl, Pinto, Dayal (b0160) 2001 Zaki (b0235) 2001; 42 Huynh, Nguyen, Vo, Nguyen, Tseng (b0105) 2019; 142 Gan, Lin, Fournier-Viger, Chao, Yu (b0090) 2020; 50 Fowkes, Sutton (b0080) 2016 Fournier-Viger, Gomariz, Campos, Thomas (b0065) 2014 Cooley, Mobasher, Srivastava (b0045) 1997 Patel, Modi, Passi (b0155) 2016 Fournier-Viger, Li, Lin, Chi, Uday Kiran (b0070) 2020; 191 Zhao, Yan, Ng (b0240) 2014; 26 Huynh, Nguyen, Vo, Yun, Oplatková, Hong (b0115) 2020; 107 Huynh, Vo, Snasel (b0100) 2017; 46 Yu, Zhou (b0205) 2010; 37 Vo, Coenen, Le (b0195) 2013; 40 Lee, Yun, Ryu (b0135) 2017; 25 Wu, Lin, Tamrakar (b0200) 2019; 13 Yun, Leggett (b0225) 2006 Yun, Lee, Ryu (b0220) 2014; 55 Ayres, Flannick, Gehrke, Yiu (b0030) 2002 Belhadi, Djenouri, Lin, Cano (b0035) 2020; 50 Bermingham, Lee (b0040) 2020; 189 Kessl (b0120) 2016; 28 Kieu, Vo, Le, Deng, Le (b0125) 2017; 85 Van, Vo, Le (b0180) 2018; 57 Lin, Djenouri, Srivastava (b0145) 2021; 76 Huynh, Nguyen, Vo, Nguyen, Tseng (b0110) 2020; 142 Lee, Stolfo (b0140) 1998 Vanahalli, Patil (b0190) 2019; 496 Bermingham (10.1016/j.ins.2021.08.070_b0040) 2020; 189 Zaki (10.1016/j.ins.2021.08.070_b0230) 2001; 61 Fournier-Viger (10.1016/j.ins.2021.08.070_b0065) 2014 Andrzejewski (10.1016/j.ins.2021.08.070_b0025) 2018; 93 Van (10.1016/j.ins.2021.08.070_b0180) 2018; 57 Zhao (10.1016/j.ins.2021.08.070_b0240) 2014; 26 Agrawal (10.1016/j.ins.2021.08.070_b0010) 1995 Belhadi (10.1016/j.ins.2021.08.070_b0035) 2020; 50 Kieu (10.1016/j.ins.2021.08.070_b0125) 2017; 85 Lee (10.1016/j.ins.2021.08.070_b0135) 2017; 25 Pei (10.1016/j.ins.2021.08.070_b0160) 2001 Cooley (10.1016/j.ins.2021.08.070_b0045) 1997 Fournier-Viger (10.1016/j.ins.2021.08.070_b0075) 2016 Lin (10.1016/j.ins.2021.08.070_b0150) 2021; 108 Lin (10.1016/j.ins.2021.08.070_b0145) 2021; 76 Petitjean (10.1016/j.ins.2021.08.070_b0165) 2016; 30 Kessl (10.1016/j.ins.2021.08.070_b0120) 2016; 28 Huynh (10.1016/j.ins.2021.08.070_b0100) 2017; 46 Yun (10.1016/j.ins.2021.08.070_b0220) 2014; 55 Gan (10.1016/j.ins.2021.08.070_b0090) 2020; 50 Yun (10.1016/j.ins.2021.08.070_b0215) 2007; 177 Gouda (10.1016/j.ins.2021.08.070_b0095) 2010; 76 Vanahalli (10.1016/j.ins.2021.08.070_b0190) 2019; 496 Fowkes (10.1016/j.ins.2021.08.070_b0080) 2016 Wu (10.1016/j.ins.2021.08.070_b0200) 2019; 13 Vo (10.1016/j.ins.2021.08.070_b0195) 2013; 40 Riondato (10.1016/j.ins.2021.08.070_b0170) 2012 Ahmed (10.1016/j.ins.2021.08.070_b0020) 2010; 32 Yu (10.1016/j.ins.2021.08.070_b0205) 2010; 37 Huynh (10.1016/j.ins.2021.08.070_b0115) 2020; 107 Djenouri (10.1016/j.ins.2021.08.070_b0055) 2018; 459 Van (10.1016/j.ins.2021.08.070_b0185) 2018; 48 Demiriz (10.1016/j.ins.2021.08.070_b0050) 2002 Djenouri (10.1016/j.ins.2021.08.070_b0060) 2019; 496 Huynh (10.1016/j.ins.2021.08.070_b0110) 2020; 142 Lee (10.1016/j.ins.2021.08.070_b0140) 1998 Gan (10.1016/j.ins.2021.08.070_b0085) 2019; 13 Ayres (10.1016/j.ins.2021.08.070_b0030) 2002 Huynh (10.1016/j.ins.2021.08.070_b0105) 2019; 142 Zaki (10.1016/j.ins.2021.08.070_b0235) 2001; 42 Agrawal (10.1016/j.ins.2021.08.070_b0005) 1993 Agrawal (10.1016/j.ins.2021.08.070_b0015) 1996 Fournier-Viger (10.1016/j.ins.2021.08.070_b0070) 2020; 191 Ting (10.1016/j.ins.2021.08.070_b0175) 2005 Yun (10.1016/j.ins.2021.08.070_b0225) 2006 Kim (10.1016/j.ins.2021.08.070_b0130) 2019; 7 Patel (10.1016/j.ins.2021.08.070_b0155) 2016 Yu (10.1016/j.ins.2021.08.070_b0210) 2019; 22 |
| References_xml | – volume: 61 start-page: 401 year: 2001 end-page: 426 ident: b0230 article-title: Parallel sequence mining on shared-memory machines publication-title: J. Parallel Distrib. Comput. – volume: 7 start-page: 128651 year: 2019 end-page: 128658 ident: b0130 article-title: Location-based parallel sequential pattern mining algorithm publication-title: IEEE Access – start-page: 429 year: 2002 end-page: 435 ident: b0030 article-title: Sequential pattern mining using a bitmap representation publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – start-page: 215 year: 2001 end-page: 224 ident: b0160 article-title: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth publication-title: Proc. Int. Conf. Data Eng. – volume: 76 start-page: 88 year: 2010 end-page: 102 ident: b0095 article-title: Prism: an effective approach for frequent sequence mining via prime-block encoding publication-title: J. Comput. Syst. Sci. – volume: 189 year: 2020 ident: b0040 article-title: Mining distinct and contiguous sequential patterns from large vehicle trajectories publication-title: Knowledge-Based Syst. – start-page: 85 year: 2012 ident: b0170 article-title: PARMA: a parallel randomized algorithm for approximate association rules mining in map reduce publication-title: Proc. 21st ACM Int. Conf. Inf. Knowl. Manag. – volume: 191 year: 2020 ident: b0070 article-title: Mining cost-effective patterns in event logs publication-title: Knowledge-Based Syst. – volume: 28 start-page: 1299 year: 2016 end-page: 1311 ident: b0120 article-title: Probabilistic static load-balancing of parallel mining of frequent sequences publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 3 year: 1995 end-page: 14 ident: b0010 article-title: Mining sequential patterns publication-title: Proc. Int. Conf. Data Eng. – volume: 37 start-page: 2486 year: 2010 end-page: 2494 ident: b0205 article-title: Parallel TID-based frequent pattern mining algorithm on a PC Cluster and grid computing system publication-title: Expert Syst. Appl. – volume: 46 start-page: 703 year: 2017 end-page: 716 ident: b0100 article-title: An efficient method for mining frequent sequential patterns using multi-Core processors publication-title: Appl. Intell. – start-page: 512 year: 2006 end-page: 517 ident: b0225 article-title: WSpan: Weighted sequential pattern mining in large sequence databases publication-title: Proc. Int. IEEE Conf. Intell. Syst. – volume: 25 start-page: 111 year: 2017 end-page: 144 ident: b0135 article-title: Mining frequent weighted itemsets without storing transaction IDs and generating candidates publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. – start-page: 558 year: 1997 end-page: 567 ident: b0045 article-title: Web mining: information and pattern discovery on the World Wide Web, publication-title: Proc. IEEE Int. Conf. Tools with Artif. Intell. – start-page: 179 year: 2005 end-page: 185 ident: b0175 article-title: UBB mining: Finding unexpected browsing behaviour in clickstream data to improve a web site’s design publication-title: Proc. ACM Int. Conf. Web Intell. – volume: 48 start-page: 3902 year: 2018 end-page: 3914 ident: b0185 article-title: Mining web access patterns with super-pattern constraint publication-title: Appl. Intell. – volume: 13 start-page: 1 year: 2019 end-page: 34 ident: b0085 article-title: A survey of parallel sequential pattern mining publication-title: ACM Trans. Knowl. Discov. Data – volume: 40 start-page: 1256 year: 2013 end-page: 1264 ident: b0195 article-title: A new method for mining frequent weighted itemsets based on WIT-trees publication-title: Expert Syst. Appl. – volume: 177 start-page: 3477 year: 2007 end-page: 3499 ident: b0215 article-title: Efficient mining of weighted interesting patterns with a strong weight and/or support affinity publication-title: Inf. Sci. (Ny) – volume: 55 start-page: 49 year: 2014 end-page: 65 ident: b0220 article-title: Mining maximal frequent patterns by considering weight conditions over data streams publication-title: Knowledge-Based Syst. – volume: 108 year: 2021 ident: b0150 article-title: A predictive GA-based model for closed high-utility itemset mining publication-title: Appl. Soft Comput. – volume: 93 start-page: 465 year: 2018 end-page: 483 ident: b0025 article-title: Efficient spatial co-location pattern mining on multiple GPUs publication-title: Expert Syst. Appl. – volume: 50 start-page: 1195 year: 2020 end-page: 1208 ident: b0090 article-title: HUOPM: high-utility occupancy pattern mining publication-title: IEEE Trans. Cybern. – volume: 22 start-page: 295 year: 2019 end-page: 324 ident: b0210 article-title: Scalable and parallel sequential pattern mining using spark publication-title: World Wide Web. – start-page: 40 year: 2014 end-page: 52 ident: b0065 article-title: Fast vertical mining of sequential patterns using co-occurrence information publication-title: Proc. Pacific-Asia Conf. Knowl. Discov. Data Min – volume: 13 start-page: 1 year: 2019 end-page: 22 ident: b0200 article-title: High-utility itemset mining with effective pruning strategies publication-title: ACM Trans. Knowl. Discov. Data. – volume: 26 start-page: 1171 year: 2014 end-page: 1184 ident: b0240 article-title: Mining probabilistically frequent sequential patterns in large uncertain databases publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 36 year: 2016 end-page: 40 ident: b0075 article-title: The SPMF open-source data mining library version 2 publication-title: Proc. Jt. Eur. Conf. Mach. Learn. Knowl. Discov. Databases – year: 1998 ident: b0140 article-title: Data mining approaches for intrusion detection data mining approaches for intrusion detection publication-title: Proc. Conf. USENIX Secur. – start-page: 3 year: 1996 end-page: 14 ident: b0015 article-title: Mining sequential patterns publication-title: Proc. Elev. Int. Conf. Data Eng. – volume: 496 start-page: 363 year: 2019 end-page: 377 ident: b0060 article-title: Exploiting GPU and cluster parallelism in single scan frequent itemset mining publication-title: Inf. Sci. (Ny) – volume: 30 start-page: 1086 year: 2016 end-page: 1111 ident: b0165 article-title: Skopus: Mining top-k sequential patterns under leverage publication-title: Data Min. Knowl. Discov. – start-page: 835 year: 2016 end-page: 844 ident: b0080 article-title: A subsequence interleaving model for sequential pattern mining publication-title: Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. – volume: 142 year: 2019 ident: b0105 article-title: Efficient methods for mining weighted clickstream patterns publication-title: Expert Syst. Appl. – volume: 50 start-page: 2647 year: 2020 end-page: 2662 ident: b0035 article-title: A general-purpose distributed pattern mining system publication-title: Appl. Intell. – volume: 107 start-page: 18 year: 2020 end-page: 30 ident: b0115 article-title: Efficient algorithms for mining clickstream patterns using pseudo-IDLists publication-title: Futur. Gener. Comput. Syst. – volume: 57 start-page: 311 year: 2018 end-page: 330 ident: b0180 article-title: Mining sequential patterns with itemset constraints publication-title: Knowl. Inf. Syst. – volume: 42 start-page: 31 year: 2001 end-page: 60 ident: b0235 article-title: SPADE: an efficient algorithm for mining frequent sequences publication-title: Mach. Learn. – volume: 32 start-page: 676 year: 2010 end-page: 686 ident: b0020 article-title: A novel approach for mining high-utility sequential patterns in sequence databases publication-title: ETRI J. – volume: 459 start-page: 117 year: 2018 end-page: 134 ident: b0055 article-title: Mining diversified association rules in big datasets: a cluster/GPU/genetic approach publication-title: Inf. Sci. (Ny) – volume: 142 start-page: 112993 year: 2020 ident: b0110 article-title: Efficient methods for mining weighted clickstream patterns publication-title: Expert Syst. Appl. – volume: 85 start-page: 123 year: 2017 end-page: 133 ident: b0125 article-title: Mining top-k co-occurrence items with sequential pattern publication-title: Expert Syst. Appl. – volume: 76 start-page: 122 year: 2021 end-page: 132 ident: b0145 article-title: Efficient closed high-utility pattern fusion model in large-scale databases publication-title: Inf. Fusion – start-page: 207 year: 1993 end-page: 216 ident: b0005 article-title: Mining association rules between sets of items in large databases publication-title: Proc. ACM SIGMOD Int. Conf. Manag. Data – start-page: 755 year: 2002 end-page: 758 ident: b0050 article-title: webSPADE: a parallel sequence mining algorithm to analyze web log data publication-title: Proc. Int. Conf. Data Min. – volume: 496 start-page: 343 year: 2019 end-page: 362 ident: b0190 article-title: An efficient parallel row enumerated algorithm for mining frequent colossal closed itemsets from high dimensional datasets publication-title: Inf. Sci. (Ny) – start-page: 904 year: 2016 end-page: 915 ident: b0155 article-title: An effective approach for mining weighted sequential patterns publication-title: Proc. Int. Conf. Smart Trends Inf. Technol. Comput. Commun. – volume: 191 year: 2020 ident: 10.1016/j.ins.2021.08.070_b0070 article-title: Mining cost-effective patterns in event logs publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2019.105241 – start-page: 85 year: 2012 ident: 10.1016/j.ins.2021.08.070_b0170 article-title: PARMA: a parallel randomized algorithm for approximate association rules mining in map reduce – volume: 37 start-page: 2486 issue: 3 year: 2010 ident: 10.1016/j.ins.2021.08.070_b0205 article-title: Parallel TID-based frequent pattern mining algorithm on a PC Cluster and grid computing system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.07.072 – start-page: 429 year: 2002 ident: 10.1016/j.ins.2021.08.070_b0030 article-title: Sequential pattern mining using a bitmap representation – volume: 142 start-page: 112993 year: 2020 ident: 10.1016/j.ins.2021.08.070_b0110 article-title: Efficient methods for mining weighted clickstream patterns publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112993 – volume: 57 start-page: 311 issue: 2 year: 2018 ident: 10.1016/j.ins.2021.08.070_b0180 article-title: Mining sequential patterns with itemset constraints publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1161-6 – volume: 48 start-page: 3902 issue: 11 year: 2018 ident: 10.1016/j.ins.2021.08.070_b0185 article-title: Mining web access patterns with super-pattern constraint publication-title: Appl. Intell. doi: 10.1007/s10489-018-1182-6 – start-page: 558 year: 1997 ident: 10.1016/j.ins.2021.08.070_b0045 article-title: Web mining: information and pattern discovery on the World Wide Web, – volume: 107 start-page: 18 year: 2020 ident: 10.1016/j.ins.2021.08.070_b0115 article-title: Efficient algorithms for mining clickstream patterns using pseudo-IDLists publication-title: Futur. Gener. Comput. Syst. doi: 10.1016/j.future.2020.01.034 – volume: 25 start-page: 111 issue: 01 year: 2017 ident: 10.1016/j.ins.2021.08.070_b0135 article-title: Mining frequent weighted itemsets without storing transaction IDs and generating candidates publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst. doi: 10.1142/S0218488517500052 – start-page: 215 year: 2001 ident: 10.1016/j.ins.2021.08.070_b0160 article-title: PrefixSpan: mining sequential patterns efficiently by prefix-projected pattern growth – volume: 50 start-page: 2647 issue: 9 year: 2020 ident: 10.1016/j.ins.2021.08.070_b0035 article-title: A general-purpose distributed pattern mining system publication-title: Appl. Intell. doi: 10.1007/s10489-020-01664-w – volume: 496 start-page: 363 year: 2019 ident: 10.1016/j.ins.2021.08.070_b0060 article-title: Exploiting GPU and cluster parallelism in single scan frequent itemset mining publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2018.07.020 – volume: 55 start-page: 49 year: 2014 ident: 10.1016/j.ins.2021.08.070_b0220 article-title: Mining maximal frequent patterns by considering weight conditions over data streams publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2013.10.011 – start-page: 755 year: 2002 ident: 10.1016/j.ins.2021.08.070_b0050 article-title: webSPADE: a parallel sequence mining algorithm to analyze web log data – volume: 46 start-page: 703 issue: 3 year: 2017 ident: 10.1016/j.ins.2021.08.070_b0100 article-title: An efficient method for mining frequent sequential patterns using multi-Core processors publication-title: Appl. Intell. doi: 10.1007/s10489-016-0859-y – start-page: 904 year: 2016 ident: 10.1016/j.ins.2021.08.070_b0155 article-title: An effective approach for mining weighted sequential patterns – volume: 189 year: 2020 ident: 10.1016/j.ins.2021.08.070_b0040 article-title: Mining distinct and contiguous sequential patterns from large vehicle trajectories publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2019.105076 – year: 1998 ident: 10.1016/j.ins.2021.08.070_b0140 article-title: Data mining approaches for intrusion detection data mining approaches for intrusion detection – volume: 28 start-page: 1299 issue: 5 year: 2016 ident: 10.1016/j.ins.2021.08.070_b0120 article-title: Probabilistic static load-balancing of parallel mining of frequent sequences publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2016.2515622 – volume: 13 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.ins.2021.08.070_b0085 article-title: A survey of parallel sequential pattern mining publication-title: ACM Trans. Knowl. Discov. Data doi: 10.1145/3314107 – volume: 50 start-page: 1195 year: 2020 ident: 10.1016/j.ins.2021.08.070_b0090 article-title: HUOPM: high-utility occupancy pattern mining publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2896267 – start-page: 835 year: 2016 ident: 10.1016/j.ins.2021.08.070_b0080 article-title: A subsequence interleaving model for sequential pattern mining – volume: 85 start-page: 123 year: 2017 ident: 10.1016/j.ins.2021.08.070_b0125 article-title: Mining top-k co-occurrence items with sequential pattern publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.05.021 – start-page: 3 year: 1996 ident: 10.1016/j.ins.2021.08.070_b0015 article-title: Mining sequential patterns – volume: 26 start-page: 1171 year: 2014 ident: 10.1016/j.ins.2021.08.070_b0240 article-title: Mining probabilistically frequent sequential patterns in large uncertain databases publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.124 – volume: 22 start-page: 295 issue: 1 year: 2019 ident: 10.1016/j.ins.2021.08.070_b0210 article-title: Scalable and parallel sequential pattern mining using spark publication-title: World Wide Web. doi: 10.1007/s11280-018-0566-1 – start-page: 207 year: 1993 ident: 10.1016/j.ins.2021.08.070_b0005 article-title: Mining association rules between sets of items in large databases – start-page: 36 year: 2016 ident: 10.1016/j.ins.2021.08.070_b0075 article-title: The SPMF open-source data mining library version 2 – volume: 76 start-page: 122 year: 2021 ident: 10.1016/j.ins.2021.08.070_b0145 article-title: Efficient closed high-utility pattern fusion model in large-scale databases publication-title: Inf. Fusion doi: 10.1016/j.inffus.2021.05.011 – volume: 13 start-page: 1 year: 2019 ident: 10.1016/j.ins.2021.08.070_b0200 article-title: High-utility itemset mining with effective pruning strategies publication-title: ACM Trans. Knowl. Discov. Data. doi: 10.1145/3363571 – volume: 42 start-page: 31 year: 2001 ident: 10.1016/j.ins.2021.08.070_b0235 article-title: SPADE: an efficient algorithm for mining frequent sequences publication-title: Mach. Learn. doi: 10.1023/A:1007652502315 – volume: 93 start-page: 465 year: 2018 ident: 10.1016/j.ins.2021.08.070_b0025 article-title: Efficient spatial co-location pattern mining on multiple GPUs publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.10.025 – start-page: 512 year: 2006 ident: 10.1016/j.ins.2021.08.070_b0225 article-title: WSpan: Weighted sequential pattern mining in large sequence databases – volume: 76 start-page: 88 year: 2010 ident: 10.1016/j.ins.2021.08.070_b0095 article-title: Prism: an effective approach for frequent sequence mining via prime-block encoding publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2009.05.008 – start-page: 179 year: 2005 ident: 10.1016/j.ins.2021.08.070_b0175 article-title: UBB mining: Finding unexpected browsing behaviour in clickstream data to improve a web site’s design – volume: 496 start-page: 343 year: 2019 ident: 10.1016/j.ins.2021.08.070_b0190 article-title: An efficient parallel row enumerated algorithm for mining frequent colossal closed itemsets from high dimensional datasets publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2018.08.009 – volume: 30 start-page: 1086 issue: 5 year: 2016 ident: 10.1016/j.ins.2021.08.070_b0165 article-title: Skopus: Mining top-k sequential patterns under leverage publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-016-0467-9 – volume: 40 start-page: 1256 issue: 4 year: 2013 ident: 10.1016/j.ins.2021.08.070_b0195 article-title: A new method for mining frequent weighted itemsets based on WIT-trees publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.08.065 – start-page: 3 year: 1995 ident: 10.1016/j.ins.2021.08.070_b0010 article-title: Mining sequential patterns – start-page: 40 year: 2014 ident: 10.1016/j.ins.2021.08.070_b0065 article-title: Fast vertical mining of sequential patterns using co-occurrence information – volume: 32 start-page: 676 year: 2010 ident: 10.1016/j.ins.2021.08.070_b0020 article-title: A novel approach for mining high-utility sequential patterns in sequence databases publication-title: ETRI J. doi: 10.4218/etrij.10.1510.0066 – volume: 459 start-page: 117 year: 2018 ident: 10.1016/j.ins.2021.08.070_b0055 article-title: Mining diversified association rules in big datasets: a cluster/GPU/genetic approach publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2018.05.031 – volume: 108 year: 2021 ident: 10.1016/j.ins.2021.08.070_b0150 article-title: A predictive GA-based model for closed high-utility itemset mining publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107422 – volume: 142 year: 2019 ident: 10.1016/j.ins.2021.08.070_b0105 article-title: Efficient methods for mining weighted clickstream patterns publication-title: Expert Syst. Appl. – volume: 7 start-page: 128651 year: 2019 ident: 10.1016/j.ins.2021.08.070_b0130 article-title: Location-based parallel sequential pattern mining algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939937 – volume: 61 start-page: 401 issue: 3 year: 2001 ident: 10.1016/j.ins.2021.08.070_b0230 article-title: Parallel sequence mining on shared-memory machines publication-title: J. Parallel Distrib. Comput. doi: 10.1006/jpdc.2000.1695 – volume: 177 start-page: 3477 issue: 17 year: 2007 ident: 10.1016/j.ins.2021.08.070_b0215 article-title: Efficient mining of weighted interesting patterns with a strong weight and/or support affinity publication-title: Inf. Sci. (Ny) doi: 10.1016/j.ins.2007.03.018 |
| SSID | ssj0004766 |
| Score | 2.4695363 |
| Snippet | •We propose a parallel depth-first search with dynamic load balancing.•We propose a parallel algorithm called PCompact-SPADE for mining weighted frequent... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 349 |
| SubjectTerms | Frequent pattern mining Parallelism Weighted clickstream patterns |
| Title | An efficient parallel algorithm for mining weighted clickstream patterns |
| URI | https://dx.doi.org/10.1016/j.ins.2021.08.070 |
| Volume | 582 |
| WOSCitedRecordID | wos000705073700006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6291 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004766 issn: 0020-0255 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKxgEOCAaIAUM-IA5UmfLV2DlWMDRgDA5l6i1yHGdkS52qTauNM384z19pGAyxA5cosmu3yfv1-X0_hF6C5u8zP8091c7Yi0VZejkPSw8OqzyJyyAX2qZ7ckSOj-l0mn4ZDH64XJh1TaSkFxfp_L-SGsaA2Cp19gbk7jaFAbgHosMVyA7XfyL8WKogjUonOg5VZe-6FioM-bRZVO23mY4rnFXGCKvtoiBy8rri5ypthM1UpVVlJFz2xVabtKSxYs_M5QYQl1LbZuBm-Gm_sy6fri4NSztqgIdM9ifd1EljPB2dNf_zvGbtebPWXvtA-0tW35lkw4_NTI-9ld1s30wRhj0zhUsb8D2lwPRZ78g0HrLMMzLFS-05HJl2O7-xeGNtOAO9RFVbD00FVtN85Ndy2leOuS740MW1nWWwRaa2yFQnTuLfQtshGaXAG7fH7w-mHzb5tcT4vN0jOO-4jhO88jv-LN_0ZJbJfXTPKht4bEDyAA2E3EF3eyUod9CeTVzBr3CPyNiy_IfocCxxByfs4IQ7OGFYgw2csIMT7sEJOzg9Ql_fHUzeHHq2-4bHw5S0XsqjhAc0H404iHyUUFoEQVSEgaCE85iJ1BdMRHEYlGmo5pIgYDQpRkVEiKBl9BhtyUaKJwhzRjkRoBvkJfAAmjCQWUsa5yQu8igqil3ku3eWcVuaXnVIqbNrabWLXndL5qYuy98-HDtCZPZPYgTGDEB1_bKnN_mOZ-jOBvbP0Va7WIk9dJuv22q5eGER9RM05Zb3 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+efficient+parallel+algorithm+for+mining+weighted+clickstream+patterns&rft.jtitle=Information+sciences&rft.au=Huynh%2C+Huy+M.&rft.au=Nguyen%2C+Loan+T.T.&rft.au=Vo%2C+Bay&rft.au=Oplatkov%C3%A1%2C+Zuzana+Kom%C3%ADnkov%C3%A1&rft.date=2022-01-01&rft.issn=0020-0255&rft.volume=582&rft.spage=349&rft.epage=368&rft_id=info:doi/10.1016%2Fj.ins.2021.08.070&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ins_2021_08_070 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon |