On clustering with discounts

We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contrib...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Information processing letters Ročník 177; s. 106272
Hlavný autor: Deng, Shichuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2022
Predmet:
ISSN:0020-0190, 1872-6119
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contribution being zero. We obtain a bi-criteria constant-factor approximation using an iterative LP rounding algorithm. Our result improves the previously best approximation guarantee for k-median with discounts (Ganesh et al. (2001) [9]). We also devise bi-criteria constant-factor approximation algorithms for the matroid and knapsack versions of median clustering with discounts. •Investigate clustering problems with discounts subject to general constraints.•Devise constant approximation algorithms using a unified iterative LP rounding method.•Modestly improve previously-known approximation guarantee for k-median with discounts.
AbstractList We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contribution being zero. We obtain a bi-criteria constant-factor approximation using an iterative LP rounding algorithm. Our result improves the previously best approximation guarantee for k-median with discounts (Ganesh et al. (2001) [9]). We also devise bi-criteria constant-factor approximation algorithms for the matroid and knapsack versions of median clustering with discounts. •Investigate clustering problems with discounts subject to general constraints.•Devise constant approximation algorithms using a unified iterative LP rounding method.•Modestly improve previously-known approximation guarantee for k-median with discounts.
ArticleNumber 106272
Author Deng, Shichuan
Author_xml – sequence: 1
  givenname: Shichuan
  orcidid: 0000-0001-8452-9558
  surname: Deng
  fullname: Deng, Shichuan
  email: dsc15@mails.tsinghua.edu.cn
  organization: Institute for Interdisciplinary Information Sciences, Tsinghua University, Haidian District, Beijing, 100084, China
BookMark eNp9z81KxDAQwPEgK7i7-gCCh75A15m0TVo8yeIXLOxFzyFNpppS0yXJKr69XdaThz0Mwxx-A_8Fm_nRE2PXCCsEFLf9yu2GFQfOp1twyc_YHGvJc4HYzNgcgEMO2MAFW8TYA4AoCzlnN1ufmWEfEwXn37Nvlz4y66IZ9z7FS3be6SHS1d9esrfHh9f1c77ZPr2s7ze54Y1MeSOrtjKtKAjRAje1sKWApiApp-kk6IqwaMuyagDI6lp3WBNZI0lSJetiyeTxrwljjIE6ZVzSyY0-Be0GhaAOkapXU6Q6RKpj5CTxn9wF96nDz0lzdzQ0JX05CioaR96QdYFMUnZ0J_Qv-TxqzQ
CitedBy_id crossref_primary_10_1007_s10489_022_04144_5
crossref_primary_10_1007_s10107_024_02119_7
Cites_doi 10.1007/s00453-015-0010-1
10.1137/S0097539702416402
10.1137/130938645
10.1145/2981561
10.1145/375827.375845
10.1145/5925.5933
10.1145/2963170
10.1016/0304-3975(85)90224-5
10.1287/moor.10.2.180
10.1016/0166-218X(79)90044-1
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ipl.2022.106272
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
ExternalDocumentID 10_1016_j_ipl_2022_106272
S0020019022000291
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-975b5cb63e11d02c86d46093e773e7f70a5e13b445900eda8af18eedc7e7e5783
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797141900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Tue Nov 18 22:19:05 EST 2025
Sat Nov 29 07:26:53 EST 2025
Fri Feb 23 02:39:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Approximation algorithms
Matroid constraint
Clustering with discounts
Knapsack constraint
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-975b5cb63e11d02c86d46093e773e7f70a5e13b445900eda8af18eedc7e7e5783
ORCID 0000-0001-8452-9558
ParticipantIDs crossref_citationtrail_10_1016_j_ipl_2022_106272
crossref_primary_10_1016_j_ipl_2022_106272
elsevier_sciencedirect_doi_10_1016_j_ipl_2022_106272
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Information processing letters
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jain, Mahdian, Saberi (br0150) 2002
Chakrabarty, Swamy (br0040) 2019
Ganesh, Maggs, Panigrahi (br0080) 2021; vol. 198
Gupta, Moseley, Zhou (br0110) 2021; vol. 198
Hochbaum, Shmoys (br0130) 1986; 33
Swamy (br0210) 2016; 12
Charikar, Li (br0050) 2012; vol. 7391
Cohen-Addad, Gupta, Hu, Oh, Saulpic (br0220) 2022
Krishnaswamy, Li, Sandeep (br0180) 2018
Jain, Vazirani (br0160) 2001; 48
Byrka, Pensyl, Rybicki, Srinivasan, Trinh (br0030) 2017; 13
Krishnaswamy, Kumar, Nagarajan, Sabharwal, Saha (br0170) 2011
Guha, Munagala (br0100) 2009
Li, Svensson (br0200) 2016; 45
Hochbaum, Shmoys (br0120) 1985; 10
Hsu, Nemhauser (br0140) 1979; 1
Kumar (br0190) 2012
Arya, Garg, Khandekar, Meyerson, Munagala, Pandit (br0020) 2004; 33
Chen, Li, Liang, Wang (br0060) 2016; 75
Edmonds (br0070) 2001; vol. 2570
Gonzalez (br0090) 1985; 38
Ahmadian, Norouzi-Fard, Svensson, Ward (br0010) 2017
Ganesh (10.1016/j.ipl.2022.106272_br0080) 2021; vol. 198
Hochbaum (10.1016/j.ipl.2022.106272_br0120) 1985; 10
Hochbaum (10.1016/j.ipl.2022.106272_br0130) 1986; 33
Chen (10.1016/j.ipl.2022.106272_br0060) 2016; 75
Jain (10.1016/j.ipl.2022.106272_br0150) 2002
Jain (10.1016/j.ipl.2022.106272_br0160) 2001; 48
Li (10.1016/j.ipl.2022.106272_br0200) 2016; 45
Cohen-Addad (10.1016/j.ipl.2022.106272_br0220) 2022
Ahmadian (10.1016/j.ipl.2022.106272_br0010) 2017
Arya (10.1016/j.ipl.2022.106272_br0020) 2004; 33
Charikar (10.1016/j.ipl.2022.106272_br0050) 2012; vol. 7391
Gonzalez (10.1016/j.ipl.2022.106272_br0090) 1985; 38
Chakrabarty (10.1016/j.ipl.2022.106272_br0040) 2019
Gupta (10.1016/j.ipl.2022.106272_br0110) 2021; vol. 198
Kumar (10.1016/j.ipl.2022.106272_br0190) 2012
Guha (10.1016/j.ipl.2022.106272_br0100) 2009
Hsu (10.1016/j.ipl.2022.106272_br0140) 1979; 1
Krishnaswamy (10.1016/j.ipl.2022.106272_br0180) 2018
Edmonds (10.1016/j.ipl.2022.106272_br0070) 2001; vol. 2570
Swamy (10.1016/j.ipl.2022.106272_br0210) 2016; 12
Byrka (10.1016/j.ipl.2022.106272_br0030) 2017; 13
Krishnaswamy (10.1016/j.ipl.2022.106272_br0170) 2011
References_xml – start-page: 646
  year: 2018
  end-page: 659
  ident: br0180
  article-title: Constant approximation for
  publication-title: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing
– start-page: 731
  year: 2002
  end-page: 740
  ident: br0150
  article-title: A new greedy approach for facility location problems
  publication-title: Proceedings on 34th Annual ACM Symposium on Theory of Computing
– volume: 10
  start-page: 180
  year: 1985
  end-page: 184
  ident: br0120
  article-title: A best possible heuristic for the
  publication-title: Math. Oper. Res.
– volume: vol. 198
  start-page: 77:1
  year: 2021
  end-page: 77:18
  ident: br0110
  article-title: Structural iterative rounding for generalized
  publication-title: 48th International Colloquium on Automata, Languages, and Programming
– volume: vol. 7391
  start-page: 194
  year: 2012
  end-page: 205
  ident: br0050
  article-title: A dependent LP-rounding approach for the
  publication-title: Automata, Languages, and Programming - 39th International Colloquium, Proceedings, Part I
– volume: 12
  year: 2016
  ident: br0210
  article-title: Improved approximation algorithms for matroid and knapsack median problems and applications
  publication-title: ACM Trans. Algorithms
– start-page: 1556
  year: 2022
  end-page: 1612
  ident: br0220
  article-title: An improved local search algorithm for
  publication-title: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 1
  start-page: 209
  year: 1979
  end-page: 215
  ident: br0140
  article-title: Easy and hard bottleneck location problems
  publication-title: Discrete Appl. Math.
– start-page: 1117
  year: 2011
  end-page: 1130
  ident: br0170
  article-title: The matroid median problem
  publication-title: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 38
  start-page: 293
  year: 1985
  end-page: 306
  ident: br0090
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
– volume: 13
  year: 2017
  ident: br0030
  article-title: An improved approximation for
  publication-title: ACM Trans. Algorithms
– volume: 75
  start-page: 27
  year: 2016
  end-page: 52
  ident: br0060
  article-title: Matroid and knapsack center problems
  publication-title: Algorithmica
– volume: 48
  start-page: 274
  year: 2001
  end-page: 296
  ident: br0160
  article-title: Approximation algorithms for metric facility location and
  publication-title: J. ACM
– volume: vol. 198
  start-page: 70:1
  year: 2021
  end-page: 70:20
  ident: br0080
  article-title: Universal algorithms for clustering problems
  publication-title: 48th International Colloquium on Automata, Languages, and Programming
– start-page: 269
  year: 2009
  end-page: 278
  ident: br0100
  article-title: Exceeding expectations and clustering uncertain data
  publication-title: Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems
– start-page: 61
  year: 2017
  end-page: 72
  ident: br0010
  article-title: Better guarantees for
  publication-title: 58th IEEE Annual Symposium on Foundations of Computer Science
– volume: 33
  start-page: 544
  year: 2004
  end-page: 562
  ident: br0020
  article-title: Local search heuristics for
  publication-title: SIAM J. Comput.
– start-page: 126
  year: 2019
  end-page: 137
  ident: br0040
  article-title: Approximation algorithms for minimum norm and ordered optimization problems
  publication-title: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
– volume: 33
  start-page: 533
  year: 1986
  end-page: 550
  ident: br0130
  article-title: A unified approach to approximation algorithms for bottleneck problems
  publication-title: J. ACM
– volume: vol. 2570
  start-page: 11
  year: 2001
  end-page: 26
  ident: br0070
  article-title: Submodular functions, matroids, and certain polyhedra
  publication-title: Combinatorial Optimization - Eureka, You Shrink!
– start-page: 824
  year: 2012
  end-page: 832
  ident: br0190
  article-title: Constant factor approximation algorithm for the knapsack median problem
  publication-title: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 45
  start-page: 530
  year: 2016
  end-page: 547
  ident: br0200
  article-title: Approximating
  publication-title: SIAM J. Comput.
– volume: 75
  start-page: 27
  issue: 1
  year: 2016
  ident: 10.1016/j.ipl.2022.106272_br0060
  article-title: Matroid and knapsack center problems
  publication-title: Algorithmica
  doi: 10.1007/s00453-015-0010-1
– volume: vol. 2570
  start-page: 11
  year: 2001
  ident: 10.1016/j.ipl.2022.106272_br0070
  article-title: Submodular functions, matroids, and certain polyhedra
– start-page: 1117
  year: 2011
  ident: 10.1016/j.ipl.2022.106272_br0170
  article-title: The matroid median problem
– volume: vol. 198
  start-page: 70:1
  year: 2021
  ident: 10.1016/j.ipl.2022.106272_br0080
  article-title: Universal algorithms for clustering problems
– start-page: 646
  year: 2018
  ident: 10.1016/j.ipl.2022.106272_br0180
  article-title: Constant approximation for k-median and k-means with outliers via iterative rounding
– volume: 33
  start-page: 544
  issue: 3
  year: 2004
  ident: 10.1016/j.ipl.2022.106272_br0020
  article-title: Local search heuristics for k-median and facility location problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539702416402
– start-page: 126
  year: 2019
  ident: 10.1016/j.ipl.2022.106272_br0040
  article-title: Approximation algorithms for minimum norm and ordered optimization problems
– start-page: 61
  year: 2017
  ident: 10.1016/j.ipl.2022.106272_br0010
  article-title: Better guarantees for k-means and Euclidean k-median by primal-dual algorithms
– start-page: 731
  year: 2002
  ident: 10.1016/j.ipl.2022.106272_br0150
  article-title: A new greedy approach for facility location problems
– volume: 45
  start-page: 530
  issue: 2
  year: 2016
  ident: 10.1016/j.ipl.2022.106272_br0200
  article-title: Approximating k-median via pseudo-approximation
  publication-title: SIAM J. Comput.
  doi: 10.1137/130938645
– volume: vol. 7391
  start-page: 194
  year: 2012
  ident: 10.1016/j.ipl.2022.106272_br0050
  article-title: A dependent LP-rounding approach for the k-median problem
– volume: 13
  issue: 2
  year: 2017
  ident: 10.1016/j.ipl.2022.106272_br0030
  article-title: An improved approximation for k-median and positive correlation in budgeted optimization
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2981561
– start-page: 1556
  year: 2022
  ident: 10.1016/j.ipl.2022.106272_br0220
  article-title: An improved local search algorithm for k-median
– volume: 48
  start-page: 274
  issue: 2
  year: 2001
  ident: 10.1016/j.ipl.2022.106272_br0160
  article-title: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation
  publication-title: J. ACM
  doi: 10.1145/375827.375845
– volume: 33
  start-page: 533
  issue: 3
  year: 1986
  ident: 10.1016/j.ipl.2022.106272_br0130
  article-title: A unified approach to approximation algorithms for bottleneck problems
  publication-title: J. ACM
  doi: 10.1145/5925.5933
– volume: 12
  issue: 4
  year: 2016
  ident: 10.1016/j.ipl.2022.106272_br0210
  article-title: Improved approximation algorithms for matroid and knapsack median problems and applications
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2963170
– start-page: 824
  year: 2012
  ident: 10.1016/j.ipl.2022.106272_br0190
  article-title: Constant factor approximation algorithm for the knapsack median problem
– volume: 38
  start-page: 293
  year: 1985
  ident: 10.1016/j.ipl.2022.106272_br0090
  article-title: Clustering to minimize the maximum intercluster distance
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(85)90224-5
– volume: 10
  start-page: 180
  issue: 2
  year: 1985
  ident: 10.1016/j.ipl.2022.106272_br0120
  article-title: A best possible heuristic for the k-center problem
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.10.2.180
– volume: 1
  start-page: 209
  issue: 3
  year: 1979
  ident: 10.1016/j.ipl.2022.106272_br0140
  article-title: Easy and hard bottleneck location problems
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(79)90044-1
– start-page: 269
  year: 2009
  ident: 10.1016/j.ipl.2022.106272_br0100
  article-title: Exceeding expectations and clustering uncertain data
– volume: vol. 198
  start-page: 77:1
  year: 2021
  ident: 10.1016/j.ipl.2022.106272_br0110
  article-title: Structural iterative rounding for generalized k-median problems
SSID ssj0006437
Score 2.331232
Snippet We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106272
SubjectTerms Approximation algorithms
Clustering with discounts
Knapsack constraint
Matroid constraint
Title On clustering with discounts
URI https://dx.doi.org/10.1016/j.ipl.2022.106272
Volume 177
WOSCitedRecordID wos000797141900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8UPHjx24ii2cGTZqTrPtoeicGoB_CACbdl67oAIZPwYfjzfaXdhgSMHDxsWZa22_pr3n5t33s_hO4TTAmRTmpH2IMJSkJ8m3Oa2tj1aBxjxlmgxSZou816Pf5uxC-nSzkBmmVsseDjf4Ua7gHYKnR2B7iLRuEGXAPocAbY4fwn4DvZoxjNVf6DYp1Vhd4qTYjpKhU1gUhL_Mc6XEBVGC3je0q5eWnWk_sD0Z-boWRWCWCCmfuolV77ygFNS3MWls8oqGjb5aiMxWSjWdUz_GFjMFa7NYQ0yrI_U1iv_VoKh7_cl2wYQhOhaiLUTeyjKqE-ZxVUbb62em_FX1RtKGr3HP3e-Y700jdv7T02c4oVntA9QUeG4FtNDcwp2pPZGTrOxTMsY0vPUb2TWSVOlsLJKnC6QB_Pre7Ti22kKmxBOJ3ZnPqxL-LAlY6TYCJYkHgB5q6kFI6U4siXjht7nhJplUnEotRhQE8ElVSC0XQvUSX7zOQVsiKc4DjwEiaBeomIMJliLlgMVE8mnhPXEM4_NhQmj7uSExmFWzu5hh6KKmOdxOS3wl7eg6FhYZpdhTAatle73uUZN-iwHKR1VJlN5vIWHYiv2WA6uTND4RsDdk7m
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+clustering+with+discounts&rft.jtitle=Information+processing+letters&rft.au=Deng%2C+Shichuan&rft.date=2022-08-01&rft.issn=0020-0190&rft.volume=177&rft.spage=106272&rft_id=info:doi/10.1016%2Fj.ipl.2022.106272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipl_2022_106272
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon