On clustering with discounts
We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contrib...
Gespeichert in:
| Veröffentlicht in: | Information processing letters Jg. 177; S. 106272 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.08.2022
|
| Schlagworte: | |
| ISSN: | 0020-0190, 1872-6119 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contribution being zero. We obtain a bi-criteria constant-factor approximation using an iterative LP rounding algorithm. Our result improves the previously best approximation guarantee for k-median with discounts (Ganesh et al. (2001) [9]). We also devise bi-criteria constant-factor approximation algorithms for the matroid and knapsack versions of median clustering with discounts.
•Investigate clustering problems with discounts subject to general constraints.•Devise constant approximation algorithms using a unified iterative LP rounding method.•Modestly improve previously-known approximation guarantee for k-median with discounts. |
|---|---|
| AbstractList | We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to minimize the sum of distances from each client to its nearest open facility which is discounted by its own discount value, with minimum contribution being zero. We obtain a bi-criteria constant-factor approximation using an iterative LP rounding algorithm. Our result improves the previously best approximation guarantee for k-median with discounts (Ganesh et al. (2001) [9]). We also devise bi-criteria constant-factor approximation algorithms for the matroid and knapsack versions of median clustering with discounts.
•Investigate clustering problems with discounts subject to general constraints.•Devise constant approximation algorithms using a unified iterative LP rounding method.•Modestly improve previously-known approximation guarantee for k-median with discounts. |
| ArticleNumber | 106272 |
| Author | Deng, Shichuan |
| Author_xml | – sequence: 1 givenname: Shichuan orcidid: 0000-0001-8452-9558 surname: Deng fullname: Deng, Shichuan email: dsc15@mails.tsinghua.edu.cn organization: Institute for Interdisciplinary Information Sciences, Tsinghua University, Haidian District, Beijing, 100084, China |
| BookMark | eNp9z81KxDAQwPEgK7i7-gCCh75A15m0TVo8yeIXLOxFzyFNpppS0yXJKr69XdaThz0Mwxx-A_8Fm_nRE2PXCCsEFLf9yu2GFQfOp1twyc_YHGvJc4HYzNgcgEMO2MAFW8TYA4AoCzlnN1ufmWEfEwXn37Nvlz4y66IZ9z7FS3be6SHS1d9esrfHh9f1c77ZPr2s7ze54Y1MeSOrtjKtKAjRAje1sKWApiApp-kk6IqwaMuyagDI6lp3WBNZI0lSJetiyeTxrwljjIE6ZVzSyY0-Be0GhaAOkapXU6Q6RKpj5CTxn9wF96nDz0lzdzQ0JX05CioaR96QdYFMUnZ0J_Qv-TxqzQ |
| CitedBy_id | crossref_primary_10_1007_s10489_022_04144_5 crossref_primary_10_1007_s10107_024_02119_7 |
| Cites_doi | 10.1007/s00453-015-0010-1 10.1137/S0097539702416402 10.1137/130938645 10.1145/2981561 10.1145/375827.375845 10.1145/5925.5933 10.1145/2963170 10.1016/0304-3975(85)90224-5 10.1287/moor.10.2.180 10.1016/0166-218X(79)90044-1 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. |
| Copyright_xml | – notice: 2022 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ipl.2022.106272 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-6119 |
| ExternalDocumentID | 10_1016_j_ipl_2022_106272 S0020019022000291 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29I 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFSI ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BKOMP BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MO0 MS~ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SME SPC SPCBC SSV SSZ T5K TN5 UQL WH7 WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-975b5cb63e11d02c86d46093e773e7f70a5e13b445900eda8af18eedc7e7e5783 |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000797141900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0020-0190 |
| IngestDate | Tue Nov 18 22:19:05 EST 2025 Sat Nov 29 07:26:53 EST 2025 Fri Feb 23 02:39:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Approximation algorithms Matroid constraint Clustering with discounts Knapsack constraint |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-975b5cb63e11d02c86d46093e773e7f70a5e13b445900eda8af18eedc7e7e5783 |
| ORCID | 0000-0001-8452-9558 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ipl_2022_106272 crossref_primary_10_1016_j_ipl_2022_106272 elsevier_sciencedirect_doi_10_1016_j_ipl_2022_106272 |
| PublicationCentury | 2000 |
| PublicationDate | August 2022 2022-08-00 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: August 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Information processing letters |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jain, Mahdian, Saberi (br0150) 2002 Chakrabarty, Swamy (br0040) 2019 Ganesh, Maggs, Panigrahi (br0080) 2021; vol. 198 Gupta, Moseley, Zhou (br0110) 2021; vol. 198 Hochbaum, Shmoys (br0130) 1986; 33 Swamy (br0210) 2016; 12 Charikar, Li (br0050) 2012; vol. 7391 Cohen-Addad, Gupta, Hu, Oh, Saulpic (br0220) 2022 Krishnaswamy, Li, Sandeep (br0180) 2018 Jain, Vazirani (br0160) 2001; 48 Byrka, Pensyl, Rybicki, Srinivasan, Trinh (br0030) 2017; 13 Krishnaswamy, Kumar, Nagarajan, Sabharwal, Saha (br0170) 2011 Guha, Munagala (br0100) 2009 Li, Svensson (br0200) 2016; 45 Hochbaum, Shmoys (br0120) 1985; 10 Hsu, Nemhauser (br0140) 1979; 1 Kumar (br0190) 2012 Arya, Garg, Khandekar, Meyerson, Munagala, Pandit (br0020) 2004; 33 Chen, Li, Liang, Wang (br0060) 2016; 75 Edmonds (br0070) 2001; vol. 2570 Gonzalez (br0090) 1985; 38 Ahmadian, Norouzi-Fard, Svensson, Ward (br0010) 2017 Ganesh (10.1016/j.ipl.2022.106272_br0080) 2021; vol. 198 Hochbaum (10.1016/j.ipl.2022.106272_br0120) 1985; 10 Hochbaum (10.1016/j.ipl.2022.106272_br0130) 1986; 33 Chen (10.1016/j.ipl.2022.106272_br0060) 2016; 75 Jain (10.1016/j.ipl.2022.106272_br0150) 2002 Jain (10.1016/j.ipl.2022.106272_br0160) 2001; 48 Li (10.1016/j.ipl.2022.106272_br0200) 2016; 45 Cohen-Addad (10.1016/j.ipl.2022.106272_br0220) 2022 Ahmadian (10.1016/j.ipl.2022.106272_br0010) 2017 Arya (10.1016/j.ipl.2022.106272_br0020) 2004; 33 Charikar (10.1016/j.ipl.2022.106272_br0050) 2012; vol. 7391 Gonzalez (10.1016/j.ipl.2022.106272_br0090) 1985; 38 Chakrabarty (10.1016/j.ipl.2022.106272_br0040) 2019 Gupta (10.1016/j.ipl.2022.106272_br0110) 2021; vol. 198 Kumar (10.1016/j.ipl.2022.106272_br0190) 2012 Guha (10.1016/j.ipl.2022.106272_br0100) 2009 Hsu (10.1016/j.ipl.2022.106272_br0140) 1979; 1 Krishnaswamy (10.1016/j.ipl.2022.106272_br0180) 2018 Edmonds (10.1016/j.ipl.2022.106272_br0070) 2001; vol. 2570 Swamy (10.1016/j.ipl.2022.106272_br0210) 2016; 12 Byrka (10.1016/j.ipl.2022.106272_br0030) 2017; 13 Krishnaswamy (10.1016/j.ipl.2022.106272_br0170) 2011 |
| References_xml | – start-page: 646 year: 2018 end-page: 659 ident: br0180 article-title: Constant approximation for publication-title: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing – start-page: 731 year: 2002 end-page: 740 ident: br0150 article-title: A new greedy approach for facility location problems publication-title: Proceedings on 34th Annual ACM Symposium on Theory of Computing – volume: 10 start-page: 180 year: 1985 end-page: 184 ident: br0120 article-title: A best possible heuristic for the publication-title: Math. Oper. Res. – volume: vol. 198 start-page: 77:1 year: 2021 end-page: 77:18 ident: br0110 article-title: Structural iterative rounding for generalized publication-title: 48th International Colloquium on Automata, Languages, and Programming – volume: vol. 7391 start-page: 194 year: 2012 end-page: 205 ident: br0050 article-title: A dependent LP-rounding approach for the publication-title: Automata, Languages, and Programming - 39th International Colloquium, Proceedings, Part I – volume: 12 year: 2016 ident: br0210 article-title: Improved approximation algorithms for matroid and knapsack median problems and applications publication-title: ACM Trans. Algorithms – start-page: 1556 year: 2022 end-page: 1612 ident: br0220 article-title: An improved local search algorithm for publication-title: Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms – volume: 1 start-page: 209 year: 1979 end-page: 215 ident: br0140 article-title: Easy and hard bottleneck location problems publication-title: Discrete Appl. Math. – start-page: 1117 year: 2011 end-page: 1130 ident: br0170 article-title: The matroid median problem publication-title: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms – volume: 38 start-page: 293 year: 1985 end-page: 306 ident: br0090 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor. Comput. Sci. – volume: 13 year: 2017 ident: br0030 article-title: An improved approximation for publication-title: ACM Trans. Algorithms – volume: 75 start-page: 27 year: 2016 end-page: 52 ident: br0060 article-title: Matroid and knapsack center problems publication-title: Algorithmica – volume: 48 start-page: 274 year: 2001 end-page: 296 ident: br0160 article-title: Approximation algorithms for metric facility location and publication-title: J. ACM – volume: vol. 198 start-page: 70:1 year: 2021 end-page: 70:20 ident: br0080 article-title: Universal algorithms for clustering problems publication-title: 48th International Colloquium on Automata, Languages, and Programming – start-page: 269 year: 2009 end-page: 278 ident: br0100 article-title: Exceeding expectations and clustering uncertain data publication-title: Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems – start-page: 61 year: 2017 end-page: 72 ident: br0010 article-title: Better guarantees for publication-title: 58th IEEE Annual Symposium on Foundations of Computer Science – volume: 33 start-page: 544 year: 2004 end-page: 562 ident: br0020 article-title: Local search heuristics for publication-title: SIAM J. Comput. – start-page: 126 year: 2019 end-page: 137 ident: br0040 article-title: Approximation algorithms for minimum norm and ordered optimization problems publication-title: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing – volume: 33 start-page: 533 year: 1986 end-page: 550 ident: br0130 article-title: A unified approach to approximation algorithms for bottleneck problems publication-title: J. ACM – volume: vol. 2570 start-page: 11 year: 2001 end-page: 26 ident: br0070 article-title: Submodular functions, matroids, and certain polyhedra publication-title: Combinatorial Optimization - Eureka, You Shrink! – start-page: 824 year: 2012 end-page: 832 ident: br0190 article-title: Constant factor approximation algorithm for the knapsack median problem publication-title: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms – volume: 45 start-page: 530 year: 2016 end-page: 547 ident: br0200 article-title: Approximating publication-title: SIAM J. Comput. – volume: 75 start-page: 27 issue: 1 year: 2016 ident: 10.1016/j.ipl.2022.106272_br0060 article-title: Matroid and knapsack center problems publication-title: Algorithmica doi: 10.1007/s00453-015-0010-1 – volume: vol. 2570 start-page: 11 year: 2001 ident: 10.1016/j.ipl.2022.106272_br0070 article-title: Submodular functions, matroids, and certain polyhedra – start-page: 1117 year: 2011 ident: 10.1016/j.ipl.2022.106272_br0170 article-title: The matroid median problem – volume: vol. 198 start-page: 70:1 year: 2021 ident: 10.1016/j.ipl.2022.106272_br0080 article-title: Universal algorithms for clustering problems – start-page: 646 year: 2018 ident: 10.1016/j.ipl.2022.106272_br0180 article-title: Constant approximation for k-median and k-means with outliers via iterative rounding – volume: 33 start-page: 544 issue: 3 year: 2004 ident: 10.1016/j.ipl.2022.106272_br0020 article-title: Local search heuristics for k-median and facility location problems publication-title: SIAM J. Comput. doi: 10.1137/S0097539702416402 – start-page: 126 year: 2019 ident: 10.1016/j.ipl.2022.106272_br0040 article-title: Approximation algorithms for minimum norm and ordered optimization problems – start-page: 61 year: 2017 ident: 10.1016/j.ipl.2022.106272_br0010 article-title: Better guarantees for k-means and Euclidean k-median by primal-dual algorithms – start-page: 731 year: 2002 ident: 10.1016/j.ipl.2022.106272_br0150 article-title: A new greedy approach for facility location problems – volume: 45 start-page: 530 issue: 2 year: 2016 ident: 10.1016/j.ipl.2022.106272_br0200 article-title: Approximating k-median via pseudo-approximation publication-title: SIAM J. Comput. doi: 10.1137/130938645 – volume: vol. 7391 start-page: 194 year: 2012 ident: 10.1016/j.ipl.2022.106272_br0050 article-title: A dependent LP-rounding approach for the k-median problem – volume: 13 issue: 2 year: 2017 ident: 10.1016/j.ipl.2022.106272_br0030 article-title: An improved approximation for k-median and positive correlation in budgeted optimization publication-title: ACM Trans. Algorithms doi: 10.1145/2981561 – start-page: 1556 year: 2022 ident: 10.1016/j.ipl.2022.106272_br0220 article-title: An improved local search algorithm for k-median – volume: 48 start-page: 274 issue: 2 year: 2001 ident: 10.1016/j.ipl.2022.106272_br0160 article-title: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation publication-title: J. ACM doi: 10.1145/375827.375845 – volume: 33 start-page: 533 issue: 3 year: 1986 ident: 10.1016/j.ipl.2022.106272_br0130 article-title: A unified approach to approximation algorithms for bottleneck problems publication-title: J. ACM doi: 10.1145/5925.5933 – volume: 12 issue: 4 year: 2016 ident: 10.1016/j.ipl.2022.106272_br0210 article-title: Improved approximation algorithms for matroid and knapsack median problems and applications publication-title: ACM Trans. Algorithms doi: 10.1145/2963170 – start-page: 824 year: 2012 ident: 10.1016/j.ipl.2022.106272_br0190 article-title: Constant factor approximation algorithm for the knapsack median problem – volume: 38 start-page: 293 year: 1985 ident: 10.1016/j.ipl.2022.106272_br0090 article-title: Clustering to minimize the maximum intercluster distance publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(85)90224-5 – volume: 10 start-page: 180 issue: 2 year: 1985 ident: 10.1016/j.ipl.2022.106272_br0120 article-title: A best possible heuristic for the k-center problem publication-title: Math. Oper. Res. doi: 10.1287/moor.10.2.180 – volume: 1 start-page: 209 issue: 3 year: 1979 ident: 10.1016/j.ipl.2022.106272_br0140 article-title: Easy and hard bottleneck location problems publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(79)90044-1 – start-page: 269 year: 2009 ident: 10.1016/j.ipl.2022.106272_br0100 article-title: Exceeding expectations and clustering uncertain data – volume: vol. 198 start-page: 77:1 year: 2021 ident: 10.1016/j.ipl.2022.106272_br0110 article-title: Structural iterative rounding for generalized k-median problems |
| SSID | ssj0006437 |
| Score | 2.331325 |
| Snippet | We study the k-median with discounts problem, wherein we are given clients with non-negative discounts and seek to open at most k facilities. The goal is to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106272 |
| SubjectTerms | Approximation algorithms Clustering with discounts Knapsack constraint Matroid constraint |
| Title | On clustering with discounts |
| URI | https://dx.doi.org/10.1016/j.ipl.2022.106272 |
| Volume | 177 |
| WOSCitedRecordID | wos000797141900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6119 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006437 issn: 0020-0190 databaseCode: AIEXJ dateStart: 19950113 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8UPHjx24ii2cGTZqTtProdicGoMeABDbdl60qAkLnwYfjzfV27DQkYOXjYsjRt1_XXvb62770fQrdWRAS2BDWp5fimbUfc9GnsmV4_pjgO-8TOAph-vLJ22-v1_DdNfjnN6ARYkniLhZ_-K9SQBmBL19kt4C4qhQR4BtDhDrDD_U_Ad5J7Pp7L-AfFPqt0vZWcENNlVVQ7ImX4p8pdQBYYZ_49Jd280PvJgyEfzPVQ0rsEsMDMbdRKq31pgKaoOQvJpxlUlOwiMmIxXStW1Qp_1Bim8rSG0kaZ92cI65WppTD4y23JRgFUEcgqAlXFLqpS5vheBVWbz63eSzGLygNFZZ6j2p2fSGe2eSvtWK9TLOkJ3SN0oBV8o6mAOUY7IjlBhzl5hqFl6SmqdxKjxMmQOBkFTmfo_bHVfXgyNVWFyanPZqbPnMjhkWsJQmJMuefGtot9SzAGV5_h0BHEimxbkrSKOPTgL_BAPeFMMAFC0zpHleQzERfIYA4jkMPuu6CqcuJGOAyFjEkkXBwSjGsI5x8bcB3HXdKJjIONnVxDd0WRVAUx-S2znfdgoLUwpV0FMBo2F7vc5h1XaL8cpHVUmU3m4hrt8a_ZcDq50UPhG6iaTto |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+clustering+with+discounts&rft.jtitle=Information+processing+letters&rft.au=Deng%2C+Shichuan&rft.date=2022-08-01&rft.issn=0020-0190&rft.volume=177&rft.spage=106272&rft_id=info:doi/10.1016%2Fj.ipl.2022.106272&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipl_2022_106272 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon |