A factor graph model for unsupervised feature selection

•A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS, the maximal information coefficient (MIC) is used to measure the similarities between features, and a message passing algorithm developed for...

Full description

Saved in:
Bibliographic Details
Published in:Information sciences Vol. 480; pp. 144 - 159
Main Authors: Wang, Hongjun, Zhang, Yinghui, Zhang, Ji, Li, Tianrui, Peng, Lingxi
Format: Journal Article
Language:English
Published: Elsevier Inc 01.04.2019
Subjects:
ISSN:0020-0255, 1872-6291
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS, the maximal information coefficient (MIC) is used to measure the similarities between features, and a message passing algorithm developed for the purpose is used to infer the factor graph.•Extensive experiments show the strengths of FGUFS over existing methods to achieve high clustering accuracy, RI and purity while containing few redundant features. In this paper, a factor graph model for unsupervised feature selection (FGUFS) is proposed. FGUFS explicitly measures the similarities between features; these similarities are passed to each other as messages in the graph model. The importance score of each feature is calculated using the message-passing algorithm, and then feature selection is performed based on the final importance scores. Extensive experiments were performed on several datasets, and the results demonstrate that FGUFS outperforms other state-of-art unsupervised feature selection algorithms on several performance measures.
AbstractList •A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS, the maximal information coefficient (MIC) is used to measure the similarities between features, and a message passing algorithm developed for the purpose is used to infer the factor graph.•Extensive experiments show the strengths of FGUFS over existing methods to achieve high clustering accuracy, RI and purity while containing few redundant features. In this paper, a factor graph model for unsupervised feature selection (FGUFS) is proposed. FGUFS explicitly measures the similarities between features; these similarities are passed to each other as messages in the graph model. The importance score of each feature is calculated using the message-passing algorithm, and then feature selection is performed based on the final importance scores. Extensive experiments were performed on several datasets, and the results demonstrate that FGUFS outperforms other state-of-art unsupervised feature selection algorithms on several performance measures.
Author Zhang, Yinghui
Li, Tianrui
Zhang, Ji
Peng, Lingxi
Wang, Hongjun
Author_xml – sequence: 1
  givenname: Hongjun
  surname: Wang
  fullname: Wang, Hongjun
  email: wanghongjun@swjtu.edu.cn
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 2
  givenname: Yinghui
  surname: Zhang
  fullname: Zhang, Yinghui
  organization: Software Center, Northeastern University, Shenyang 110819, China
– sequence: 3
  givenname: Ji
  surname: Zhang
  fullname: Zhang, Ji
  email: JiZhang@my.swjtu.edu.cn
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 4
  givenname: Tianrui
  orcidid: 0000-0003-3550-3495
  surname: Li
  fullname: Li, Tianrui
  email: trli@swjtu.edu.cn
  organization: School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China
– sequence: 5
  givenname: Lingxi
  surname: Peng
  fullname: Peng, Lingxi
  email: scu.peng@gmail.com
  organization: School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, Guangdong 510006, China
BookMark eNp9j01rAjEQhkOxULX9Ab3tH9jtzOxHlJ5E2loQevEeYjJpI-uuJKvQf99Ye-pBGGZ4D8_wPhMx6vqOhXhEKBCwedoVvosFAc4KpALK6kaMcSYpb2iOIzEGIMiB6vpOTGLcAUAlm2Ys5CJz2gx9yD6DPnxl-95ym7mUj108HjicfGSbOdbDMXAWuWUz-L67F7dOt5Ef_u5UbF5fNstVvv54e18u1rmhuRzyeVVrckQAGljWGl2J1mhJMi0Dhvh3bIWWts3WIVZGYmpXEvGWy6nAy1sT-hgDO3UIfq_Dt0JQZ3G1U0lcncUVkkriiZH_GOMHfS49BO3bq-TzheRkdPIcVDSeO8PWh6StbO-v0D-0Y3VM
CitedBy_id crossref_primary_10_1109_JIOT_2025_3526812
crossref_primary_10_1016_j_ygeno_2020_07_027
crossref_primary_10_1016_j_ins_2020_09_022
crossref_primary_10_1016_j_knosys_2022_109884
crossref_primary_10_1186_s40537_020_00352_3
crossref_primary_10_1186_s40537_021_00477_z
crossref_primary_10_1016_j_ins_2021_02_035
crossref_primary_10_1016_j_ins_2021_04_083
crossref_primary_10_1016_j_compbiomed_2022_105766
crossref_primary_10_1016_j_artmed_2021_102228
crossref_primary_10_1016_j_knosys_2020_105516
crossref_primary_10_1016_j_eswa_2023_122548
crossref_primary_10_1016_j_ins_2024_120121
crossref_primary_10_1007_s13042_020_01180_w
crossref_primary_10_1016_j_ins_2020_02_070
crossref_primary_10_1007_s11227_023_05138_x
crossref_primary_10_1016_j_ins_2022_12_105
crossref_primary_10_1109_TKDE_2023_3266595
crossref_primary_10_1007_s13042_022_01618_3
crossref_primary_10_1016_j_cose_2020_102062
crossref_primary_10_1016_j_asoc_2022_109715
crossref_primary_10_1016_j_engappai_2021_104210
crossref_primary_10_1016_j_isci_2024_111270
crossref_primary_10_1016_j_knosys_2021_107595
crossref_primary_10_1016_j_ins_2022_11_156
crossref_primary_10_1016_j_cja_2021_09_001
crossref_primary_10_1007_s10489_024_05604_w
crossref_primary_10_1016_j_ins_2022_12_036
Cites_doi 10.1023/A:1025667309714
10.1137/1.9781611972771.75
10.1109/TKDE.2015.2493537
10.1016/j.knosys.2015.12.006
10.1609/aaai.v24i1.7671
10.1109/TNNLS.2014.2314123
10.1145/301250.301257
10.1109/ICCEE.2008.38
10.1007/s10994-016-5570-z
10.1109/34.990133
10.1145/1273496.1273641
10.1109/TCBB.2016.2631164
10.1109/LGRS.2016.2645710
10.1016/j.ins.2009.12.010
10.1609/aaai.v29i1.9211
10.1126/science.1205438
10.1109/TKDE.2015.2455509
10.1109/TIT.2005.850085
10.1126/science.1136800
10.1145/1273496.1273600
10.1609/aaai.v30i1.10168
10.1093/bioinformatics/bth267
10.1145/2499907.2499909
10.1109/TPAMI.2005.159
10.1109/TCBB.2008.35
10.1109/TPAMI.2004.71
10.1016/j.eswa.2015.08.050
10.1109/IJCNN.2014.6889514
10.1016/j.procs.2013.05.011
10.1007/978-3-642-24800-9_24
10.1126/science.1127647
10.1109/ICDM.2015.80
10.1109/TNN.2010.2047114
10.1145/1835804.1835848
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright_xml – notice: 2018 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.ins.2018.12.034
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
EISSN 1872-6291
EndPage 159
ExternalDocumentID 10_1016_j_ins_2018_12_034
S0020025518309861
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1OL
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSW
SSZ
T5K
TN5
TWZ
UHS
WH7
WUQ
XPP
YYP
ZMT
ZY4
~02
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-945a2f2200a0e75a1f31dca727ca7c0c2ec2ec2d41d2b6bf114c71000322ebe3
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000459644700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0255
IngestDate Tue Nov 18 21:12:34 EST 2025
Sat Nov 29 06:25:08 EST 2025
Fri Feb 23 02:33:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature selection
Factor graph
Message-passing algorithm
Unsupervised learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-945a2f2200a0e75a1f31dca727ca7c0c2ec2ec2d41d2b6bf114c71000322ebe3
ORCID 0000-0003-3550-3495
PageCount 16
ParticipantIDs crossref_primary_10_1016_j_ins_2018_12_034
crossref_citationtrail_10_1016_j_ins_2018_12_034
elsevier_sciencedirect_doi_10_1016_j_ins_2018_12_034
PublicationCentury 2000
PublicationDate April 2019
2019-04-00
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationTitle Information sciences
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 333–342.
J. Sun, A. Zhou, Unsupervised robust Bayesian feature selection, in: Proceedings of the International Joint Conference on Neural Networks, 2014, pp. 558–564.
Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in: Proceedings of the 7th SIAM International Conference on Data Mining, SIAM, 2007, pp. 641–646.
Robnik-Šikonja, Kononenko (bib0031) 2003; 53
Yedidia, Freeman, Weiss (bib0042) 2005; 51
Frey, Dueck (bib0006) 2007; 315
Tao, Zhang, Ogihara (bib0034) 2004; 20
Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 1151–1157.
M. He, Research on feature selection algorithm based on mixed model, in: Proceedings of the IEEE International Conference on Computer and Electrical Engineering, IEEE, 2008, pp. 70–72.
M.H. Law, A.K. Jain, M.A.T. Figueiredo, Feature selection in mixture-based clustering, in: Proceedings of the Advances in Neural Information Processing Systems, 2002, pp. 625–632.
Yang, Lyu, King (bib0040) 2013; 7
Ma, Li, Gao (bib0025) 2017; 14
S. Wang, J. Tang, H. Liu, Embedded unsupervised feature selection, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 470–476.
Luo, Nie, Chang, Yang, Hauptmann, Zheng (bib0024) 2018
Q. Gu, M. Danilevsky, Z. Li, J. Han, Laplacian score for feature selection, in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012, pp. 477–485.
Hall (bib0014) 1999
Mitra, Murthy, Pal (bib0026) 2002; 24
Zhao, He, Cai, Zhang, Ng, Zhuang (bib0048) 2016; 28
Z. Zhao, L. Wang, H. Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp. 673–678.
García, Fernández, Luengo, Herrera (bib0008) 2010; 180
L. Song, A. Smola, A. Gretton, K.M. Borgwardt, J. Bedo, Supervised feature selection via dependence estimation, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 823–830.
Yu, Liu (bib0043) 2004; 5
Hela, Yacine, Maria, Thierry, Emmanuel, Stphane (bib0018) 2016; 237
Peng, Long, Ding (bib0029) 2005; 27
Mocanu, Mocanu, Nguyen, Gibescu, Liotta (bib0027) 2016; 104
Zhao, Deng, Shi (bib0044) 2013; 17
Xu, King, Lyu, Jin (bib0039) 2010; 21
Han, Yang, Yan, Ma, Sebe, Zhou (bib0015) 2015; 26
X. He, D. Cai, P. Niyogi, Locality preserving feature learning, in: Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514.
Y. Yang, H.T. Shen, Z. Ma, Z. Huang, X. Zhou, L 2, 1-norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Volume Two, AAAI Press, 2011, pp. 1589–1594.
Dy, Brodley (bib0005) 2004; 5
Reshef, Reshef, Finucane, Grossman, McVean, Turnbaugh, Lander, Mitzenmacher, Sabeti (bib0030) 2011; 334
García, Luengo, Herrera (bib0010) 2015
M. Charikar, S. Guha, É. Tardos, D.B. Shmoys, A constant-factor approximation algorithm for the
Hinton, Salakhutdinov (bib0019) 2006; 313
Brown, Pocock, Zhao, Luján (bib0002) 2012; 13
median problem, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, ACM, 1999, pp. 1–10.
García, Luengo, Herrera (bib0009) 2016; 98
Y. Guan, J.G. Dy, M.I. Jordan, A unified probabilistic model for global and local unsupervised feature selection, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 1073–1080.
Gui, Sun, Ji, Tao, Tan (bib0013) 2016; PP
D. Wang, H. Zhang, R. Liu, Gs-orthogonalization based “basis feature” selection from word co-occurrence matrix, in: Proceedings of the IEEE International Conference on Data Mining, 2016, pp. 1027–1032.
Gangeh, Zarkoob, Ghodsi (bib0007) 2017; 14
Banerjee, Pal (bib0001) 2015; 27
G. Lastra, O. Luaces, J.R. Quevedo, A. Bahamonde, Graphical feature selection for multilabel classiffication tasks, in: Proceedings of the International Symposium on Intelligent Data Analysis, 2011, pp. 246–257.
Zhu, Wang, Yu, Li, Gong (bib0049) 2010; 7
Hou, Nie, Li, Yi, Wu (bib0020) 2017; 44
Uysal (bib0035) 2016; 43
Law, Figueiredo, Jain (bib0023) 2004; 26
F. Nie, W. Zhu, X. Li, Unsupervised feature selection with structured graph optimization, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1302–1308.
Weston, Elisseeff, Schölkopf, Tipping (bib0038) 2003; 3
Hela (10.1016/j.ins.2018.12.034_bib0018) 2016; 237
10.1016/j.ins.2018.12.034_bib0021
10.1016/j.ins.2018.12.034_bib0022
10.1016/j.ins.2018.12.034_bib0028
Zhao (10.1016/j.ins.2018.12.034_bib0044) 2013; 17
Law (10.1016/j.ins.2018.12.034_bib0023) 2004; 26
Hinton (10.1016/j.ins.2018.12.034_bib0019) 2006; 313
Peng (10.1016/j.ins.2018.12.034_bib0029) 2005; 27
Reshef (10.1016/j.ins.2018.12.034_bib0030) 2011; 334
Zhao (10.1016/j.ins.2018.12.034_bib0048) 2016; 28
Frey (10.1016/j.ins.2018.12.034_bib0006) 2007; 315
Hall (10.1016/j.ins.2018.12.034_bib0014) 1999
Gangeh (10.1016/j.ins.2018.12.034_bib0007) 2017; 14
10.1016/j.ins.2018.12.034_bib0032
10.1016/j.ins.2018.12.034_bib0033
Weston (10.1016/j.ins.2018.12.034_bib0038) 2003; 3
10.1016/j.ins.2018.12.034_bib0036
10.1016/j.ins.2018.12.034_bib0037
García (10.1016/j.ins.2018.12.034_bib0008) 2010; 180
Xu (10.1016/j.ins.2018.12.034_bib0039) 2010; 21
Mitra (10.1016/j.ins.2018.12.034_bib0026) 2002; 24
Yang (10.1016/j.ins.2018.12.034_bib0040) 2013; 7
García (10.1016/j.ins.2018.12.034_bib0010) 2015
Mocanu (10.1016/j.ins.2018.12.034_bib0027) 2016; 104
10.1016/j.ins.2018.12.034_bib0045
Luo (10.1016/j.ins.2018.12.034_bib0024) 2018
10.1016/j.ins.2018.12.034_bib0046
10.1016/j.ins.2018.12.034_bib0003
10.1016/j.ins.2018.12.034_bib0047
10.1016/j.ins.2018.12.034_bib0004
García (10.1016/j.ins.2018.12.034_bib0009) 2016; 98
10.1016/j.ins.2018.12.034_bib0041
Uysal (10.1016/j.ins.2018.12.034_bib0035) 2016; 43
Yedidia (10.1016/j.ins.2018.12.034_bib0042) 2005; 51
Yu (10.1016/j.ins.2018.12.034_bib0043) 2004; 5
Robnik-Šikonja (10.1016/j.ins.2018.12.034_bib0031) 2003; 53
Dy (10.1016/j.ins.2018.12.034_bib0005) 2004; 5
10.1016/j.ins.2018.12.034_bib0012
10.1016/j.ins.2018.12.034_bib0011
10.1016/j.ins.2018.12.034_bib0016
10.1016/j.ins.2018.12.034_bib0017
Ma (10.1016/j.ins.2018.12.034_bib0025) 2017; 14
Tao (10.1016/j.ins.2018.12.034_bib0034) 2004; 20
Zhu (10.1016/j.ins.2018.12.034_bib0049) 2010; 7
Brown (10.1016/j.ins.2018.12.034_bib0002) 2012; 13
Han (10.1016/j.ins.2018.12.034_bib0015) 2015; 26
Gui (10.1016/j.ins.2018.12.034_bib0013) 2016; PP
Hou (10.1016/j.ins.2018.12.034_bib0020) 2017; 44
Banerjee (10.1016/j.ins.2018.12.034_bib0001) 2015; 27
References_xml – volume: 7
  start-page: 25
  year: 2010
  end-page: 36
  ident: bib0049
  article-title: Feature selection for gene expression using model-based entropy
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: bib0043
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– reference: Z. Zhao, H. Liu, Semi-supervised feature selection via spectral analysis, in: Proceedings of the 7th SIAM International Conference on Data Mining, SIAM, 2007, pp. 641–646.
– reference: M.H. Law, A.K. Jain, M.A.T. Figueiredo, Feature selection in mixture-based clustering, in: Proceedings of the Advances in Neural Information Processing Systems, 2002, pp. 625–632.
– reference: F. Nie, W. Zhu, X. Li, Unsupervised feature selection with structured graph optimization, in: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016, pp. 1302–1308.
– volume: 14
  start-page: 409
  year: 2017
  end-page: 413
  ident: bib0025
  article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 26
  start-page: 252
  year: 2015
  ident: bib0015
  article-title: Semisupervised feature selection via spline regression for video semantic recognition
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– reference: G. Lastra, O. Luaces, J.R. Quevedo, A. Bahamonde, Graphical feature selection for multilabel classiffication tasks, in: Proceedings of the International Symposium on Intelligent Data Analysis, 2011, pp. 246–257.
– volume: 334
  start-page: 1518
  year: 2011
  end-page: 1524
  ident: bib0030
  article-title: Detecting novel associations in large data sets
  publication-title: Science
– volume: 13
  start-page: 27
  year: 2012
  end-page: 66
  ident: bib0002
  article-title: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 44
  start-page: 793
  year: 2017
  end-page: 804
  ident: bib0020
  article-title: Joint embedding learning and sparse regression: a framework for unsupervised feature selection.
  publication-title: IEEE Trans. Cybern.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bib0019
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– year: 1999
  ident: bib0014
  publication-title: Correlation-based feature selection for machine learning
– volume: PP
  start-page: 1
  year: 2016
  end-page: 18
  ident: bib0013
  article-title: Feature selection based on structured sparsity: a comprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: bib0006
  article-title: Clustering by passing messages between data points
  publication-title: Science
– volume: 104
  start-page: 243
  year: 2016
  end-page: 270
  ident: bib0027
  article-title: A topological insight into restricted Boltzmann machines
  publication-title: Mach. Learn.
– volume: 53
  start-page: 23
  year: 2003
  end-page: 69
  ident: bib0031
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
– volume: 20
  start-page: 2429
  year: 2004
  end-page: 2437
  ident: bib0034
  article-title: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
  publication-title: Bioinformatics
– volume: 28
  start-page: 689
  year: 2016
  end-page: 700
  ident: bib0048
  article-title: Graph regularized feature selection with data reconstruction
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: D. Cai, C. Zhang, X. He, Unsupervised feature selection for multi-cluster data, in: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2010, pp. 333–342.
– reference: M. He, Research on feature selection algorithm based on mixed model, in: Proceedings of the IEEE International Conference on Computer and Electrical Engineering, IEEE, 2008, pp. 70–72.
– volume: 27
  start-page: 1226
  year: 2005
  end-page: 1238
  ident: bib0029
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: M. Charikar, S. Guha, É. Tardos, D.B. Shmoys, A constant-factor approximation algorithm for the
– volume: 43
  start-page: 82
  year: 2016
  end-page: 92
  ident: bib0035
  article-title: An improved global feature selection scheme for text classification
  publication-title: Expert Syst. Appl.
– volume: 98
  start-page: 1
  year: 2016
  end-page: 29
  ident: bib0009
  article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
  publication-title: Knowl. Based Syst.
– volume: 51
  start-page: 2282
  year: 2005
  end-page: 2312
  ident: bib0042
  article-title: Constructing free-energy approximations and generalized belief propagation algorithms
  publication-title: IEEE Trans. Inf. Theory
– reference: X. He, D. Cai, P. Niyogi, Locality preserving feature learning, in: Proceedings of the Advances in Neural Information Processing Systems, 2005, pp. 507–514.
– volume: 237
  start-page: 79
  year: 2016
  end-page: 91
  ident: bib0018
  article-title: Wood moisture content prediction using feature selection techniques and a kernel method
  publication-title: Neurocomputing
– reference: Z. Zhao, H. Liu, Spectral feature selection for supervised and unsupervised learning, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 1151–1157.
– volume: 27
  start-page: 3390
  year: 2015
  end-page: 3403
  ident: bib0001
  article-title: Unsupervised feature selection with controlled redundancy (UFeSCoR)
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: Z. Zhao, L. Wang, H. Liu, Efficient spectral feature selection with minimum redundancy, in: Proceedings of Twenty-Fourth AAAI Conference on Artificial Intelligence, 2010, pp. 673–678.
– volume: 24
  start-page: 301
  year: 2002
  end-page: 312
  ident: bib0026
  article-title: Unsupervised feature selection using feature similarity
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Q. Gu, M. Danilevsky, Z. Li, J. Han, Laplacian score for feature selection, in: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, 2012, pp. 477–485.
– volume: 7
  start-page: 1
  year: 2013
  end-page: 27
  ident: bib0040
  article-title: Efficient online learning for multitask feature selection
  publication-title: ACM Trans. Knowl. Discov. Data
– volume: 180
  start-page: 2044
  year: 2010
  end-page: 2064
  ident: bib0008
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci. (Ny)
– reference: L. Song, A. Smola, A. Gretton, K.M. Borgwardt, J. Bedo, Supervised feature selection via dependence estimation, in: Proceedings of the 24th International Conference on Machine Learning, ACM, 2007, pp. 823–830.
– reference: D. Wang, H. Zhang, R. Liu, Gs-orthogonalization based “basis feature” selection from word co-occurrence matrix, in: Proceedings of the IEEE International Conference on Data Mining, 2016, pp. 1027–1032.
– reference: S. Wang, J. Tang, H. Liu, Embedded unsupervised feature selection, in: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015, pp. 470–476.
– volume: 3
  start-page: 1439
  year: 2003
  end-page: 1461
  ident: bib0038
  article-title: Use of the zero norm with linear models and kernel methods
  publication-title: J. Mach. Learn. Res.
– reference: Y. Yang, H.T. Shen, Z. Ma, Z. Huang, X. Zhou, L 2, 1-norm regularized discriminative feature selection for unsupervised learning, in: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence-Volume Volume Two, AAAI Press, 2011, pp. 1589–1594.
– volume: 14
  start-page: 167
  year: 2017
  end-page: 181
  ident: bib0007
  article-title: Fast and scalable feature selection for gene expression data using hilbert-schmidt independence criterion
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
– volume: 17
  start-page: 70
  year: 2013
  end-page: 79
  ident: bib0044
  article-title: Feature selection with attributes clustering by maximal information coefficient
  publication-title: Proced. Comput. Sci.
– volume: 5
  start-page: 845
  year: 2004
  end-page: 889
  ident: bib0005
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– start-page: 1
  year: 2018
  end-page: 13
  ident: bib0024
  article-title: Adaptive unsupervised feature selection with structure regularization
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– reference: Y. Guan, J.G. Dy, M.I. Jordan, A unified probabilistic model for global and local unsupervised feature selection, in: Proceedings of the 28th International Conference on Machine Learning, 2011, pp. 1073–1080.
– reference: -median problem, in: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, ACM, 1999, pp. 1–10.
– volume: 26
  start-page: 1154
  year: 2004
  end-page: 1166
  ident: bib0023
  article-title: Simultaneous feature selection and clustering using mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 21
  start-page: 1033
  year: 2010
  end-page: 1047
  ident: bib0039
  article-title: Discriminative semi-supervised feature selection via manifold regularization
  publication-title: IEEE Trans. Neural Netw.
– year: 2015
  ident: bib0010
  article-title: Data Preprocessing in Data Mining
– reference: J. Sun, A. Zhou, Unsupervised robust Bayesian feature selection, in: Proceedings of the International Joint Conference on Neural Networks, 2014, pp. 558–564.
– volume: 13
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.ins.2018.12.034_bib0002
  article-title: Conditional likelihood maximisation: a unifying framework for information theoretic feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 53
  start-page: 23
  issue: 1
  year: 2003
  ident: 10.1016/j.ins.2018.12.034_bib0031
  article-title: Theoretical and empirical analysis of ReliefF and RReliefF
  publication-title: Mach. Learn.
  doi: 10.1023/A:1025667309714
– ident: 10.1016/j.ins.2018.12.034_bib0045
  doi: 10.1137/1.9781611972771.75
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.ins.2018.12.034_bib0024
  article-title: Adaptive unsupervised feature selection with structure regularization
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– volume: 28
  start-page: 689
  issue: 3
  year: 2016
  ident: 10.1016/j.ins.2018.12.034_bib0048
  article-title: Graph regularized feature selection with data reconstruction
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2493537
– volume: 98
  start-page: 1
  year: 2016
  ident: 10.1016/j.ins.2018.12.034_bib0009
  article-title: Tutorial on practical tips of the most influential data preprocessing algorithms in data mining
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2015.12.006
– volume: 44
  start-page: 793
  issue: 6
  year: 2017
  ident: 10.1016/j.ins.2018.12.034_bib0020
  article-title: Joint embedding learning and sparse regression: a framework for unsupervised feature selection.
  publication-title: IEEE Trans. Cybern.
– volume: 5
  start-page: 1205
  issue: 12
  year: 2004
  ident: 10.1016/j.ins.2018.12.034_bib0043
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.ins.2018.12.034_bib0047
  doi: 10.1609/aaai.v24i1.7671
– year: 2015
  ident: 10.1016/j.ins.2018.12.034_bib0010
– volume: 5
  start-page: 845
  issue: 4
  year: 2004
  ident: 10.1016/j.ins.2018.12.034_bib0005
  article-title: Feature selection for unsupervised learning
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 252
  issue: 2
  year: 2015
  ident: 10.1016/j.ins.2018.12.034_bib0015
  article-title: Semisupervised feature selection via spline regression for video semantic recognition
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
  doi: 10.1109/TNNLS.2014.2314123
– ident: 10.1016/j.ins.2018.12.034_bib0004
  doi: 10.1145/301250.301257
– ident: 10.1016/j.ins.2018.12.034_bib0016
  doi: 10.1109/ICCEE.2008.38
– volume: 104
  start-page: 243
  issue: 2–3
  year: 2016
  ident: 10.1016/j.ins.2018.12.034_bib0027
  article-title: A topological insight into restricted Boltzmann machines
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-016-5570-z
– year: 1999
  ident: 10.1016/j.ins.2018.12.034_bib0014
– volume: 24
  start-page: 301
  issue: 3
  year: 2002
  ident: 10.1016/j.ins.2018.12.034_bib0026
  article-title: Unsupervised feature selection using feature similarity
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.990133
– ident: 10.1016/j.ins.2018.12.034_bib0046
  doi: 10.1145/1273496.1273641
– ident: 10.1016/j.ins.2018.12.034_bib0017
– volume: 14
  start-page: 167
  issue: 1
  year: 2017
  ident: 10.1016/j.ins.2018.12.034_bib0007
  article-title: Fast and scalable feature selection for gene expression data using hilbert-schmidt independence criterion
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2016.2631164
– volume: 237
  start-page: 79
  year: 2016
  ident: 10.1016/j.ins.2018.12.034_bib0018
  article-title: Wood moisture content prediction using feature selection techniques and a kernel method
  publication-title: Neurocomputing
– volume: 14
  start-page: 409
  issue: 3
  year: 2017
  ident: 10.1016/j.ins.2018.12.034_bib0025
  article-title: A novel wrapper approach for feature selection in object-based image classification using polygon-based cross-validation
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2645710
– volume: 3
  start-page: 1439
  year: 2003
  ident: 10.1016/j.ins.2018.12.034_bib0038
  article-title: Use of the zero norm with linear models and kernel methods
  publication-title: J. Mach. Learn. Res.
– volume: 180
  start-page: 2044
  issue: 10
  year: 2010
  ident: 10.1016/j.ins.2018.12.034_bib0008
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci. (Ny)
  doi: 10.1016/j.ins.2009.12.010
– volume: PP
  start-page: 1
  issue: 99
  year: 2016
  ident: 10.1016/j.ins.2018.12.034_bib0013
  article-title: Feature selection based on structured sparsity: a comprehensive study
  publication-title: IEEE Trans. Neural Netw. Learn Syst.
– ident: 10.1016/j.ins.2018.12.034_bib0012
– ident: 10.1016/j.ins.2018.12.034_bib0037
  doi: 10.1609/aaai.v29i1.9211
– volume: 334
  start-page: 1518
  issue: 6062
  year: 2011
  ident: 10.1016/j.ins.2018.12.034_bib0030
  article-title: Detecting novel associations in large data sets
  publication-title: Science
  doi: 10.1126/science.1205438
– volume: 27
  start-page: 3390
  issue: 12
  year: 2015
  ident: 10.1016/j.ins.2018.12.034_bib0001
  article-title: Unsupervised feature selection with controlled redundancy (UFeSCoR)
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2455509
– ident: 10.1016/j.ins.2018.12.034_bib0022
– volume: 51
  start-page: 2282
  issue: 7
  year: 2005
  ident: 10.1016/j.ins.2018.12.034_bib0042
  article-title: Constructing free-energy approximations and generalized belief propagation algorithms
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2005.850085
– volume: 315
  start-page: 972
  issue: 5814
  year: 2007
  ident: 10.1016/j.ins.2018.12.034_bib0006
  article-title: Clustering by passing messages between data points
  publication-title: Science
  doi: 10.1126/science.1136800
– ident: 10.1016/j.ins.2018.12.034_bib0032
  doi: 10.1145/1273496.1273600
– ident: 10.1016/j.ins.2018.12.034_bib0028
  doi: 10.1609/aaai.v30i1.10168
– ident: 10.1016/j.ins.2018.12.034_bib0041
– volume: 20
  start-page: 2429
  issue: 15
  year: 2004
  ident: 10.1016/j.ins.2018.12.034_bib0034
  article-title: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth267
– volume: 7
  start-page: 1
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2018.12.034_bib0040
  article-title: Efficient online learning for multitask feature selection
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/2499907.2499909
– volume: 27
  start-page: 1226
  issue: 8
  year: 2005
  ident: 10.1016/j.ins.2018.12.034_bib0029
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– ident: 10.1016/j.ins.2018.12.034_bib0011
– volume: 7
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.ins.2018.12.034_bib0049
  article-title: Feature selection for gene expression using model-based entropy
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinf.
  doi: 10.1109/TCBB.2008.35
– volume: 26
  start-page: 1154
  issue: 9
  year: 2004
  ident: 10.1016/j.ins.2018.12.034_bib0023
  article-title: Simultaneous feature selection and clustering using mixture models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.71
– volume: 43
  start-page: 82
  issue: C
  year: 2016
  ident: 10.1016/j.ins.2018.12.034_bib0035
  article-title: An improved global feature selection scheme for text classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.08.050
– ident: 10.1016/j.ins.2018.12.034_bib0033
  doi: 10.1109/IJCNN.2014.6889514
– volume: 17
  start-page: 70
  issue: 2
  year: 2013
  ident: 10.1016/j.ins.2018.12.034_bib0044
  article-title: Feature selection with attributes clustering by maximal information coefficient
  publication-title: Proced. Comput. Sci.
  doi: 10.1016/j.procs.2013.05.011
– ident: 10.1016/j.ins.2018.12.034_bib0021
  doi: 10.1007/978-3-642-24800-9_24
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.ins.2018.12.034_bib0019
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: 10.1016/j.ins.2018.12.034_bib0036
  doi: 10.1109/ICDM.2015.80
– volume: 21
  start-page: 1033
  issue: 7
  year: 2010
  ident: 10.1016/j.ins.2018.12.034_bib0039
  article-title: Discriminative semi-supervised feature selection via manifold regularization
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2010.2047114
– ident: 10.1016/j.ins.2018.12.034_bib0003
  doi: 10.1145/1835804.1835848
SSID ssj0004766
Score 2.4422886
Snippet •A novel filter type unsupervised feature selection algorithm, namely, a factor graph model for unsupervised feature selection (FGUFS) is proposed.•In FGUFS,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 144
SubjectTerms Factor graph
Feature selection
Message-passing algorithm
Unsupervised learning
Title A factor graph model for unsupervised feature selection
URI https://dx.doi.org/10.1016/j.ins.2018.12.034
Volume 480
WOSCitedRecordID wos000459644700009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6291
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004766
  issn: 0020-0255
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdQxwM8IBggxhjyA-KBylLsOHXyWKGhMU0TDxWUp8hxHGiFsqpp0P78ne1zljFAgIRUWZVlp9XdL-e7830Q8mrGm0rNGsWMzSsmU8WZNkKyOgOJnEib1L4d0MczdX6eL5fFBwzl7Xw7AdW2-eVlsfmvrIY5YLZLnf0Ldg8PhQn4DkyHEdgO4x8xfo49dKa-FnVodeODCfu26zdONHSgZDbWV_Scdr4PTmTOOsa1DzmNUzwiB9X7EzqYTy7aL-t-gNbgeP4MZ-HXfnVr_nSYOlsFkOh2i-vQ68CLUbCKd4XFdJgb0ZpO92TOSAmHS5CouRJsJkJLrihyZejehEKThwqQeP7yUCH8lmgPXoY12COuyjrPvRcXHaE3K2a7C2hvK4G4SorcGcd7QmVFPiF78_fHy9PrxFkVLrPj_47X3j4A8Icf-rniMlJGFg_JA7Qi6Dxw_xG5Y9t9cn9UW3KfHGFGCn1NR-ykKMsfEzWnASfU44R6nFBYSMc4oYgTOuDkCVm8O168PWHYRYMZUagdK2SmRSOAIjqxKtO8SXltNOitMJjECOs_teS1qGZVAwaycSWfEhD18IanT8mkvWjtM0IL2dgsbSqptfarwVbWaSIqkRo4G9QBSSKFSoMV5l2jk29lDCVcl0DU0hG15KIEoh6QN8OWTSiv8rvFMpK9RPAHva8EjPx62_N_23ZI7l0D_wWZ7La9PSJ3zffdqtu-RCRdAbEHiFg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+factor+graph+model+for+unsupervised+feature+selection&rft.jtitle=Information+sciences&rft.au=Wang%2C+Hongjun&rft.au=Zhang%2C+Yinghui&rft.au=Zhang%2C+Ji&rft.au=Li%2C+Tianrui&rft.date=2019-04-01&rft.pub=Elsevier+Inc&rft.issn=0020-0255&rft.eissn=1872-6291&rft.volume=480&rft.spage=144&rft.epage=159&rft_id=info:doi/10.1016%2Fj.ins.2018.12.034&rft.externalDocID=S0020025518309861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0255&client=summon