Asymptotic theory for LAD estimation of moderate deviations from a unit root
An asymptotic result is given for the least absolute deviations (LAD) estimation of autoregressive time series with a root of the form ρn=1+c/kn, where kn increases to infinity at a rate slower than n. For c<0, a nkn rate of convergence and asymptotic normality for the serial correlation coeffici...
Uloženo v:
| Vydáno v: | Statistics & probability letters Ročník 90; s. 25 - 32 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.07.2014
|
| Témata: | |
| ISSN: | 0167-7152, 1879-2103 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | An asymptotic result is given for the least absolute deviations (LAD) estimation of autoregressive time series with a root of the form ρn=1+c/kn, where kn increases to infinity at a rate slower than n. For c<0, a nkn rate of convergence and asymptotic normality for the serial correlation coefficient are provided. While in the case of c>0, the serial correlation coefficient is shown to have a Cauchy limit distribution with a knρnn convergence rate. The results are complementary to the limit theory of least squares (LS) estimator which has been established in Phillips and Magdalinos (2007a). |
|---|---|
| ISSN: | 0167-7152 1879-2103 |
| DOI: | 10.1016/j.spl.2014.03.004 |