A generalization of the Brown–Halmos theorems for the unit ball
In this paper we generalize the classical theorems of Brown and Halmos about algebraic properties of Toeplitz operators to Bergman spaces over the unit ball in several complex variables. A key result, which is of independent interest, is the characterization of summable functions u on the unit ball...
Uloženo v:
| Vydáno v: | Advances in mathematics (New York. 1965) Ročník 404; s. 108411 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
06.08.2022
|
| Témata: | |
| ISSN: | 0001-8708, 1090-2082 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper we generalize the classical theorems of Brown and Halmos about algebraic properties of Toeplitz operators to Bergman spaces over the unit ball in several complex variables. A key result, which is of independent interest, is the characterization of summable functions u on the unit ball whose Berezin transform can be written as a finite sum ∑jfjg¯j with all fj,gj being holomorphic. In particular, we show that such a function must be pluriharmonic if it is sufficiently smooth and bounded. We also settle an open question about M-harmonic functions. Our proofs employ techniques and results from function and operator theory as well as partial differential equations. |
|---|---|
| ISSN: | 0001-8708 1090-2082 |
| DOI: | 10.1016/j.aim.2022.108411 |