Quantized kernel recursive q-Rényi-like algorithm

This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KRqRL algorithm, an online vector quantization (VQ) method is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Digital signal processing Ročník 156; s. 104790
Hlavní autoři: Zhou, Wenwen, Zhang, Yanmin, Huang, Chunlong, Volvenko, Sergey V., Xue, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 01.01.2025
Témata:
ISSN:1051-2004
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KRqRL algorithm, an online vector quantization (VQ) method is employed to quantize the network size to a codebook size, resulting in the quantized KRqRL (QKRqRL) algorithm. This paper provides a detailed analysis of the convergence and computational complexity of the QKRqRL algorithm. In the simulation experiments, the network size of each algorithm is reduced to 25% of its original size. The performance of the QKRqRL algorithm is evaluated in terms of convergence speed, prediction error, and computation time under non-Gaussian noise conditions. Finally, the QKRqRL algorithm is further validated using sunspot data, demonstrating its superior stability and online prediction performance.
AbstractList This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KRqRL algorithm, an online vector quantization (VQ) method is employed to quantize the network size to a codebook size, resulting in the quantized KRqRL (QKRqRL) algorithm. This paper provides a detailed analysis of the convergence and computational complexity of the QKRqRL algorithm. In the simulation experiments, the network size of each algorithm is reduced to 25% of its original size. The performance of the QKRqRL algorithm is evaluated in terms of convergence speed, prediction error, and computation time under non-Gaussian noise conditions. Finally, the QKRqRL algorithm is further validated using sunspot data, demonstrating its superior stability and online prediction performance.
ArticleNumber 104790
Author Xue, Wei
Zhang, Yanmin
Huang, Chunlong
Volvenko, Sergey V.
Zhou, Wenwen
Author_xml – sequence: 1
  givenname: Wenwen
  orcidid: 0009-0004-1396-6776
  surname: Zhou
  fullname: Zhou, Wenwen
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, 150001, China
– sequence: 2
  givenname: Yanmin
  surname: Zhang
  fullname: Zhang, Yanmin
  organization: Hubei Key Laboratory of Marine Electromagnetic Detection and Control, Wuhan Second Ship Design and Research Institute, Wuhan, 430064, China
– sequence: 3
  givenname: Chunlong
  orcidid: 0009-0002-0365-1055
  surname: Huang
  fullname: Huang, Chunlong
  email: cl.huang@hrbeu.edu.cn
  organization: Yantai Research Institute of Harbin Engineering University, Yantai, 264000, China
– sequence: 4
  givenname: Sergey V.
  surname: Volvenko
  fullname: Volvenko, Sergey V.
  organization: Higher School of Applied Physics and Space Technologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia
– sequence: 5
  givenname: Wei
  surname: Xue
  fullname: Xue, Wei
  organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, 150001, China
BookMark eNp90M1OAjEQwPEeMBHQB_C2L7DYlm67jSdD_CAhMRo9N912qoWli20hwTfyOXwxl-DJA6fJHP6T_GaEBqELgNAVwROCCb9eTmzaTCimrN-ZkHiAhgRXpKQYs3M0SmmJMRaM8iGiz1sdsv8CW6wgBmiLCGYbk99B8Vm-_HyHvS9bv4JCt-9d9PljfYHOnG4TXP7NMXq7v3udPZaLp4f57HZRGipFLmtWQdU4riWDmspKs6kUxNraVE1TS26BNCCJMZWkzhEuMZeNmzaiFtwyZ6djJI53TexSiuCU8Vln34UctW8VwerAVUvVc9WBq47cviT_yk30ax33J5ubYwM9aechqmQ8BAPW9x_Jynb-RP0LmfFyUg
CitedBy_id crossref_primary_10_1016_j_dsp_2025_104997
Cites_doi 10.1016/j.dsp.2023.104159
10.1016/j.engappai.2020.103797
10.1162/089976602317250933
10.1016/j.neunet.2013.11.011
10.1109/TNNLS.2013.2258936
10.1109/TSP.2004.830985
10.1109/LSP.2020.2978408
10.1109/TSMC.2017.2760900
10.1109/72.914517
10.1016/j.dsp.2015.09.015
10.1109/TSP.2007.907881
10.1109/TWC.2014.042314.131432
10.1049/el.2013.3997
10.1016/j.physd.2008.07.006
10.1016/j.anihpb.2006.05.001
10.1090/S0002-9947-1950-0051437-7
10.1016/j.isatra.2021.08.014
10.1109/LSP.2017.2761886
10.1016/j.dsp.2021.103255
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.dsp.2024.104790
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_dsp_2024_104790
S1051200424004159
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADFGL
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WUQ
XPP
ZMT
ZU3
~G-
9DU
AATTM
AAYWO
AAYXX
ABWVN
ACLOT
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-845e5bf6a94e8295a43971dd8c5bb896de1be91cc592ff169069bf3b7876d4fd3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331646900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-2004
IngestDate Sat Nov 29 06:51:12 EST 2025
Tue Nov 18 21:00:26 EST 2025
Wed Dec 04 16:49:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-Gaussian noise conditions
Online vector quantization
q-Rényi kernel function
Online prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-845e5bf6a94e8295a43971dd8c5bb896de1be91cc592ff169069bf3b7876d4fd3
ORCID 0009-0002-0365-1055
0009-0004-1396-6776
ParticipantIDs crossref_citationtrail_10_1016_j_dsp_2024_104790
crossref_primary_10_1016_j_dsp_2024_104790
elsevier_sciencedirect_doi_10_1016_j_dsp_2024_104790
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Digital signal processing
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – sequence: 0
  name: Elsevier Inc
References Ge, Wei, Liu, Yu, Wen (br0240) March 2020; 50
Chen, Zhao, Zhu, Príncipe (br0250) 2013; 24
Zheng, Wang, Feng, Chi (br0280) 2016; 48
Liang, Li, Xia (br0160) Jun. 2021; 68
Albu, Coltuc, Rotaru, Nishikawa (br0050) 2013
Pelekanakis, Chitre (br0110) Jun. 2014; 13
Wu, Li, Xue (br0180) Jan. 2022; 120
Liu, Príncipe, Haykin (br0190) 2010
Engel, Mannor, Meir (br0030) Aug. 2004; 52
Hoseiniamin, Zayyani, Korki, Bekrani (br0090) July 2023; 70
Rpbert, Muller, Ratsch, Tsuda, Scholkopf (br0020) March 2001; 12
Liu, Pokharel, Príncipe (br0040) Mar. 2018; 56
Zhang, Peng, Li, Xie (br0130) Mar. 2020; 27
Ghil, Zaliapin, Coluzzi (br0230) 2008; 237
Albu, Nishikawa (br0080) 2017
Xu, Ren (br0070) Jul. 2022; 126
Csató, Opper (br0220) 2002; 14
Aronszajn (br0010) 1950; 68
Alipoor, Skretting (br0060) Sep. 2023; 141
Wang, Wang, Duan (br0260) June 2017; 64
Liang, Li, Han, Xue, Tu (br0170) Apr. 2022; 69
World Data Center SILSO (br0290) 2024
Fan, Song (br0200) 2014; 50
Shen, Ren, Han (br0270) 2020; 95
Huang, Li, Han, Shi, Tu (br0150) Mar. 2023; 70
Platt (br0210) 1991
Shi, Lin, Xie (br0100) Mar. 2014; 50
Zhao, Zhang (br0120) Dec. 2017; 24
Johnson, Vignat (br0140) May 2007; 43
Huang (10.1016/j.dsp.2024.104790_br0150) 2023; 70
Aronszajn (10.1016/j.dsp.2024.104790_br0010) 1950; 68
World Data Center SILSO (10.1016/j.dsp.2024.104790_br0290) 2024
Engel (10.1016/j.dsp.2024.104790_br0030) 2004; 52
Ghil (10.1016/j.dsp.2024.104790_br0230) 2008; 237
Liang (10.1016/j.dsp.2024.104790_br0170) 2022; 69
Csató (10.1016/j.dsp.2024.104790_br0220) 2002; 14
Liu (10.1016/j.dsp.2024.104790_br0040) 2018; 56
Pelekanakis (10.1016/j.dsp.2024.104790_br0110) 2014; 13
Shi (10.1016/j.dsp.2024.104790_br0100) 2014; 50
Ge (10.1016/j.dsp.2024.104790_br0240) 2020; 50
Hoseiniamin (10.1016/j.dsp.2024.104790_br0090) 2023; 70
Rpbert (10.1016/j.dsp.2024.104790_br0020) 2001; 12
Xu (10.1016/j.dsp.2024.104790_br0070) 2022; 126
Liang (10.1016/j.dsp.2024.104790_br0160) 2021; 68
Shen (10.1016/j.dsp.2024.104790_br0270) 2020; 95
Fan (10.1016/j.dsp.2024.104790_br0200) 2014; 50
Chen (10.1016/j.dsp.2024.104790_br0250) 2013; 24
Albu (10.1016/j.dsp.2024.104790_br0050) 2013
Albu (10.1016/j.dsp.2024.104790_br0080) 2017
Wu (10.1016/j.dsp.2024.104790_br0180) 2022; 120
Zhang (10.1016/j.dsp.2024.104790_br0130) 2020; 27
Liu (10.1016/j.dsp.2024.104790_br0190) 2010
Zhao (10.1016/j.dsp.2024.104790_br0120) 2017; 24
Alipoor (10.1016/j.dsp.2024.104790_br0060) 2023; 141
Zheng (10.1016/j.dsp.2024.104790_br0280) 2016; 48
Platt (10.1016/j.dsp.2024.104790_br0210) 1991
Johnson (10.1016/j.dsp.2024.104790_br0140) 2007; 43
Wang (10.1016/j.dsp.2024.104790_br0260) 2017; 64
References_xml – volume: 43
  start-page: 339
  year: May 2007
  end-page: 351
  ident: br0140
  article-title: Some results concerning maximum Rényi entropy distributions
  publication-title: Ann. Inst. Henri Poincaré, PR.
– volume: 50
  start-page: 899
  year: March 2020
  end-page: 910
  ident: br0240
  article-title: Adaptive quantized estimation fusion using strong tracking filtering and variational Bayesian
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 68
  start-page: 337
  year: 1950
  end-page: 404
  ident: br0010
  article-title: Theory of reproducing kernels
  publication-title: Trans. Am. Math. Soc.
– volume: 64
  start-page: 730
  year: June 2017
  end-page: 734
  ident: br0260
  article-title: A class of weighted quantized kernel recursive least squares algorithms
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 48
  start-page: 130
  year: 2016
  end-page: 136
  ident: br0280
  article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series
  publication-title: Digit. Signal Process.
– volume: 56
  start-page: 543
  year: Mar. 2018
  end-page: 554
  ident: br0040
  article-title: The kernel least mean square algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 50
  start-page: 142
  year: 2014
  end-page: 153
  ident: br0200
  article-title: A linear recurrent kernel online learning algorithm with sparse updates
  publication-title: Neural Netw.
– start-page: 213
  year: 1991
  end-page: 225
  ident: br0210
  article-title: A Resource-Allocating Network for Function Interpolation, vol. 3
– volume: 126
  start-page: 370
  year: Jul. 2022
  end-page: 376
  ident: br0070
  article-title: Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction
  publication-title: ISA Trans.
– year: 2024
  ident: br0290
  article-title: Sunspot Number and Long-Term Solar Observations
– volume: 24
  start-page: 1484
  year: 2013
  end-page: 1491
  ident: br0250
  article-title: Quantized kernel recursive least squares algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 50
  start-page: 466
  year: Mar. 2014
  end-page: 467
  ident: br0100
  article-title: Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference
  publication-title: Electron. Lett.
– volume: 13
  start-page: 3183
  year: Jun. 2014
  end-page: 3195
  ident: br0110
  article-title: Adaptive sparse channel estimation under symmetric
  publication-title: IEEE Trans. Wirel. Commun.
– volume: 27
  start-page: 476
  year: Mar. 2020
  end-page: 480
  ident: br0130
  article-title: A sparse robust adaptive fifiltering algorithm based on the q-Rényi kernel function
  publication-title: IEEE Signal Process. Lett.
– volume: 14
  start-page: 641
  year: 2002
  end-page: 668
  ident: br0220
  article-title: Sparse on-line Gaussian processes
  publication-title: Neural Comput.
– start-page: 349
  year: 2013
  end-page: 353
  ident: br0050
  article-title: An efficient implementation of the kernel affine projection algorithm
  publication-title: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA)
– start-page: 87
  year: 2017
  end-page: 91
  ident: br0080
  article-title: Low complexity kernel affine projection-type algorithms with a coherence criterion
  publication-title: 2017 International Conference on Signals and Systems (ICSigSys)
– volume: 70
  start-page: 1234
  year: Mar. 2023
  end-page: 1238
  ident: br0150
  article-title: Affine-projection q-Rényi algorithm for channel estimation under different vehicle velocities and impulsive interference
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 52
  start-page: 2275
  year: Aug. 2004
  end-page: 2285
  ident: br0030
  article-title: The kernel recursive least squares algorithm
  publication-title: IEEE Trans. Signal Process.
– year: 2010
  ident: br0190
  article-title: Kernel Adaptive Filtering: A Comprehensive Introduction
– volume: 237
  start-page: 2967
  year: 2008
  end-page: 2986
  ident: br0230
  article-title: Boolean delay equations: a simple way of looking at complex systems
  publication-title: Physica D
– volume: 12
  start-page: 181
  year: March 2001
  end-page: 201
  ident: br0020
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
– volume: 69
  start-page: 2356
  year: Apr. 2022
  end-page: 2360
  ident: br0170
  article-title: Channel estimation and beamforming using constrained q-Rényi kernel functioned adaptive algorithm
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 68
  start-page: 2227
  year: Jun. 2021
  end-page: 2231
  ident: br0160
  article-title: Recursive constrained adaptive algorithm under q-Rényi kernel function
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 95
  year: 2020
  ident: br0270
  article-title: Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 141
  year: Sep. 2023
  ident: br0060
  article-title: Kernel recursive least squares dictionary learning algorithm
  publication-title: Digit. Signal Process.
– volume: 70
  start-page: 2690
  year: July 2023
  end-page: 2694
  ident: br0090
  article-title: A low complexity proportionate generlized correntropy-based diffusion LMS algorithm with closed-form gain coefficients
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 24
  start-page: 1832
  year: Dec. 2017
  end-page: 1836
  ident: br0120
  article-title: Kernel recursive generalized maximum correntropy
  publication-title: IEEE Signal Process. Lett.
– volume: 120
  year: Jan. 2022
  ident: br0180
  article-title: A quantized adaptive algorithm based on the q-Rényi kernel function
  publication-title: Digit. Signal Process.
– volume: 141
  year: 2023
  ident: 10.1016/j.dsp.2024.104790_br0060
  article-title: Kernel recursive least squares dictionary learning algorithm
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2023.104159
– volume: 95
  year: 2020
  ident: 10.1016/j.dsp.2024.104790_br0270
  article-title: Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103797
– volume: 68
  start-page: 2227
  issue: 6
  year: 2021
  ident: 10.1016/j.dsp.2024.104790_br0160
  article-title: Recursive constrained adaptive algorithm under q-Rényi kernel function
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 14
  start-page: 641
  issue: 2
  year: 2002
  ident: 10.1016/j.dsp.2024.104790_br0220
  article-title: Sparse on-line Gaussian processes
  publication-title: Neural Comput.
  doi: 10.1162/089976602317250933
– start-page: 87
  year: 2017
  ident: 10.1016/j.dsp.2024.104790_br0080
  article-title: Low complexity kernel affine projection-type algorithms with a coherence criterion
– start-page: 213
  year: 1991
  ident: 10.1016/j.dsp.2024.104790_br0210
– volume: 50
  start-page: 142
  year: 2014
  ident: 10.1016/j.dsp.2024.104790_br0200
  article-title: A linear recurrent kernel online learning algorithm with sparse updates
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2013.11.011
– volume: 24
  start-page: 1484
  issue: 9
  year: 2013
  ident: 10.1016/j.dsp.2024.104790_br0250
  article-title: Quantized kernel recursive least squares algorithm
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2013.2258936
– volume: 52
  start-page: 2275
  issue: 8
  year: 2004
  ident: 10.1016/j.dsp.2024.104790_br0030
  article-title: The kernel recursive least squares algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.830985
– volume: 27
  start-page: 476
  year: 2020
  ident: 10.1016/j.dsp.2024.104790_br0130
  article-title: A sparse robust adaptive fifiltering algorithm based on the q-Rényi kernel function
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2020.2978408
– volume: 69
  start-page: 2356
  issue: 4
  year: 2022
  ident: 10.1016/j.dsp.2024.104790_br0170
  article-title: Channel estimation and beamforming using constrained q-Rényi kernel functioned adaptive algorithm
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– year: 2024
  ident: 10.1016/j.dsp.2024.104790_br0290
– volume: 50
  start-page: 899
  issue: 3
  year: 2020
  ident: 10.1016/j.dsp.2024.104790_br0240
  article-title: Adaptive quantized estimation fusion using strong tracking filtering and variational Bayesian
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2017.2760900
– volume: 12
  start-page: 181
  issue: 2
  year: 2001
  ident: 10.1016/j.dsp.2024.104790_br0020
  article-title: An introduction to kernel-based learning algorithms
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.914517
– volume: 48
  start-page: 130
  year: 2016
  ident: 10.1016/j.dsp.2024.104790_br0280
  article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2015.09.015
– volume: 56
  start-page: 543
  issue: 2
  year: 2018
  ident: 10.1016/j.dsp.2024.104790_br0040
  article-title: The kernel least mean square algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.907881
– volume: 13
  start-page: 3183
  issue: 6
  year: 2014
  ident: 10.1016/j.dsp.2024.104790_br0110
  article-title: Adaptive sparse channel estimation under symmetric α-stable noise
  publication-title: IEEE Trans. Wirel. Commun.
  doi: 10.1109/TWC.2014.042314.131432
– year: 2010
  ident: 10.1016/j.dsp.2024.104790_br0190
– volume: 64
  start-page: 730
  issue: 6
  year: 2017
  ident: 10.1016/j.dsp.2024.104790_br0260
  article-title: A class of weighted quantized kernel recursive least squares algorithms
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 50
  start-page: 466
  issue: 6
  year: 2014
  ident: 10.1016/j.dsp.2024.104790_br0100
  article-title: Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference
  publication-title: Electron. Lett.
  doi: 10.1049/el.2013.3997
– volume: 237
  start-page: 2967
  issue: 23
  year: 2008
  ident: 10.1016/j.dsp.2024.104790_br0230
  article-title: Boolean delay equations: a simple way of looking at complex systems
  publication-title: Physica D
  doi: 10.1016/j.physd.2008.07.006
– start-page: 349
  year: 2013
  ident: 10.1016/j.dsp.2024.104790_br0050
  article-title: An efficient implementation of the kernel affine projection algorithm
– volume: 43
  start-page: 339
  year: 2007
  ident: 10.1016/j.dsp.2024.104790_br0140
  article-title: Some results concerning maximum Rényi entropy distributions
  publication-title: Ann. Inst. Henri Poincaré, PR.
  doi: 10.1016/j.anihpb.2006.05.001
– volume: 68
  start-page: 337
  issue: 3
  year: 1950
  ident: 10.1016/j.dsp.2024.104790_br0010
  article-title: Theory of reproducing kernels
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1950-0051437-7
– volume: 70
  start-page: 2690
  issue: 7
  year: 2023
  ident: 10.1016/j.dsp.2024.104790_br0090
  article-title: A low complexity proportionate generlized correntropy-based diffusion LMS algorithm with closed-form gain coefficients
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 70
  start-page: 1234
  issue: 3
  year: 2023
  ident: 10.1016/j.dsp.2024.104790_br0150
  article-title: Affine-projection q-Rényi algorithm for channel estimation under different vehicle velocities and impulsive interference
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
– volume: 126
  start-page: 370
  year: 2022
  ident: 10.1016/j.dsp.2024.104790_br0070
  article-title: Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2021.08.014
– volume: 24
  start-page: 1832
  issue: 12
  year: 2017
  ident: 10.1016/j.dsp.2024.104790_br0120
  article-title: Kernel recursive generalized maximum correntropy
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2761886
– volume: 120
  year: 2022
  ident: 10.1016/j.dsp.2024.104790_br0180
  article-title: A quantized adaptive algorithm based on the q-Rényi kernel function
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2021.103255
SSID ssj0007426
Score 2.3898673
Snippet This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104790
SubjectTerms Non-Gaussian noise conditions
Online prediction
Online vector quantization
q-Rényi kernel function
Title Quantized kernel recursive q-Rényi-like algorithm
URI https://dx.doi.org/10.1016/j.dsp.2024.104790
Volume 156
WOSCitedRecordID wos001331646900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1051-2004
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007426
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOqLzUB0U5cGKV1SaxE_tYlVaFQ8WjVMspih9p002dso_S8o_4HfwxxnHihEIRPXCxIiueJP4m4_F4Hgi9jFQeCUaUH8P2w8eRkD6FZcsPIxXxMVVZlGR1sYnk4IBOJuxd49Y8r8sJJFrTy0t2_l-hhj4A24TO3gJuRxQ64BpAhxZgh_afgH-_hMkqvoEiOVUzrUzefmFMAhdq-MX_YA_G9VXhl8VUDbPyuJoVi5OzvpL6ujg2pUSGxrfDBGrZWIJ2jautzNWyds5T-msXSuZsz58zfVbojmGa7p2TpS6rjspRVYKknda22o8mCPRqeDTqWyFC0rNCWMEJP7eFoS9ZSV82mqQQtjTob2LbWhBOR3JuUoiGeNTd-2uK7GtLl3MobH3VTlMgkRoSqSVxF62ECWF0gFa23-xO3rpVOsF1KT733u2Jd-37d-09_qyz9PSQw1X0sNlAeNsW-EfojtKP0YNeWsknKHQs4FkW8BwLeMACP7638HsO_qfo097u4c6-39TG8EXIkoVPMVGE53HGsKIhI5lRLAMpqSCcUxZLFXDFAiEIC_PcnIXGjOcRB_kcS5zL6Bka6EqrNeSNecCUynLBJcZCJiww2_A4wjwGbZqLdTRuvz4VTeJ4U7-kTG-c9XX0yg05t1lT_nYzbqc0bdQ-q86lwB43D9u4zTM20f2Oa5-jwWK2VFvonrhYFPPZi4Y3fgJfvXag
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+kernel+recursive+q-R%C3%A9nyi-like+algorithm&rft.jtitle=Digital+signal+processing&rft.au=Zhou%2C+Wenwen&rft.au=Zhang%2C+Yanmin&rft.au=Huang%2C+Chunlong&rft.au=Volvenko%2C+Sergey+V.&rft.date=2025-01-01&rft.issn=1051-2004&rft.volume=156&rft.spage=104790&rft_id=info:doi/10.1016%2Fj.dsp.2024.104790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsp_2024_104790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon