Quantized kernel recursive q-Rényi-like algorithm
This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KRqRL algorithm, an online vector quantization (VQ) method is...
Uloženo v:
| Vydáno v: | Digital signal processing Ročník 156; s. 104790 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2025
|
| Témata: | |
| ISSN: | 1051-2004 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KRqRL algorithm, an online vector quantization (VQ) method is employed to quantize the network size to a codebook size, resulting in the quantized KRqRL (QKRqRL) algorithm. This paper provides a detailed analysis of the convergence and computational complexity of the QKRqRL algorithm. In the simulation experiments, the network size of each algorithm is reduced to 25% of its original size. The performance of the QKRqRL algorithm is evaluated in terms of convergence speed, prediction error, and computation time under non-Gaussian noise conditions. Finally, the QKRqRL algorithm is further validated using sunspot data, demonstrating its superior stability and online prediction performance. |
|---|---|
| AbstractList | This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS) algorithm. To reduce the computational complexity and memory requirements of the KRqRL algorithm, an online vector quantization (VQ) method is employed to quantize the network size to a codebook size, resulting in the quantized KRqRL (QKRqRL) algorithm. This paper provides a detailed analysis of the convergence and computational complexity of the QKRqRL algorithm. In the simulation experiments, the network size of each algorithm is reduced to 25% of its original size. The performance of the QKRqRL algorithm is evaluated in terms of convergence speed, prediction error, and computation time under non-Gaussian noise conditions. Finally, the QKRqRL algorithm is further validated using sunspot data, demonstrating its superior stability and online prediction performance. |
| ArticleNumber | 104790 |
| Author | Xue, Wei Zhang, Yanmin Huang, Chunlong Volvenko, Sergey V. Zhou, Wenwen |
| Author_xml | – sequence: 1 givenname: Wenwen orcidid: 0009-0004-1396-6776 surname: Zhou fullname: Zhou, Wenwen organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, 150001, China – sequence: 2 givenname: Yanmin surname: Zhang fullname: Zhang, Yanmin organization: Hubei Key Laboratory of Marine Electromagnetic Detection and Control, Wuhan Second Ship Design and Research Institute, Wuhan, 430064, China – sequence: 3 givenname: Chunlong orcidid: 0009-0002-0365-1055 surname: Huang fullname: Huang, Chunlong email: cl.huang@hrbeu.edu.cn organization: Yantai Research Institute of Harbin Engineering University, Yantai, 264000, China – sequence: 4 givenname: Sergey V. surname: Volvenko fullname: Volvenko, Sergey V. organization: Higher School of Applied Physics and Space Technologies, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, 195251, Russia – sequence: 5 givenname: Wei surname: Xue fullname: Xue, Wei organization: College of Information and Communication Engineering, Harbin Engineering University, Harbin, 150001, China |
| BookMark | eNp90M1OAjEQwPEeMBHQB_C2L7DYlm67jSdD_CAhMRo9N912qoWli20hwTfyOXwxl-DJA6fJHP6T_GaEBqELgNAVwROCCb9eTmzaTCimrN-ZkHiAhgRXpKQYs3M0SmmJMRaM8iGiz1sdsv8CW6wgBmiLCGYbk99B8Vm-_HyHvS9bv4JCt-9d9PljfYHOnG4TXP7NMXq7v3udPZaLp4f57HZRGipFLmtWQdU4riWDmspKs6kUxNraVE1TS26BNCCJMZWkzhEuMZeNmzaiFtwyZ6djJI53TexSiuCU8Vln34UctW8VwerAVUvVc9WBq47cviT_yk30ax33J5ubYwM9aechqmQ8BAPW9x_Jynb-RP0LmfFyUg |
| CitedBy_id | crossref_primary_10_1016_j_dsp_2025_104997 |
| Cites_doi | 10.1016/j.dsp.2023.104159 10.1016/j.engappai.2020.103797 10.1162/089976602317250933 10.1016/j.neunet.2013.11.011 10.1109/TNNLS.2013.2258936 10.1109/TSP.2004.830985 10.1109/LSP.2020.2978408 10.1109/TSMC.2017.2760900 10.1109/72.914517 10.1016/j.dsp.2015.09.015 10.1109/TSP.2007.907881 10.1109/TWC.2014.042314.131432 10.1049/el.2013.3997 10.1016/j.physd.2008.07.006 10.1016/j.anihpb.2006.05.001 10.1090/S0002-9947-1950-0051437-7 10.1016/j.isatra.2021.08.014 10.1109/LSP.2017.2761886 10.1016/j.dsp.2021.103255 |
| ContentType | Journal Article |
| Copyright | 2024 |
| Copyright_xml | – notice: 2024 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.dsp.2024.104790 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_dsp_2024_104790 S1051200424004159 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABJNI ABMAC ABXDB ACDAQ ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADFGL ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG5 LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K WUQ XPP ZMT ZU3 ~G- 9DU AATTM AAYWO AAYXX ABWVN ACLOT ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-845e5bf6a94e8295a43971dd8c5bb896de1be91cc592ff169069bf3b7876d4fd3 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001331646900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1051-2004 |
| IngestDate | Sat Nov 29 06:51:12 EST 2025 Tue Nov 18 21:00:26 EST 2025 Wed Dec 04 16:49:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Non-Gaussian noise conditions Online vector quantization q-Rényi kernel function Online prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-845e5bf6a94e8295a43971dd8c5bb896de1be91cc592ff169069bf3b7876d4fd3 |
| ORCID | 0009-0002-0365-1055 0009-0004-1396-6776 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_dsp_2024_104790 crossref_primary_10_1016_j_dsp_2024_104790 elsevier_sciencedirect_doi_10_1016_j_dsp_2024_104790 |
| PublicationCentury | 2000 |
| PublicationDate | January 2025 2025-01-00 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Digital signal processing |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – sequence: 0 name: Elsevier Inc |
| References | Ge, Wei, Liu, Yu, Wen (br0240) March 2020; 50 Chen, Zhao, Zhu, Príncipe (br0250) 2013; 24 Zheng, Wang, Feng, Chi (br0280) 2016; 48 Liang, Li, Xia (br0160) Jun. 2021; 68 Albu, Coltuc, Rotaru, Nishikawa (br0050) 2013 Pelekanakis, Chitre (br0110) Jun. 2014; 13 Wu, Li, Xue (br0180) Jan. 2022; 120 Liu, Príncipe, Haykin (br0190) 2010 Engel, Mannor, Meir (br0030) Aug. 2004; 52 Hoseiniamin, Zayyani, Korki, Bekrani (br0090) July 2023; 70 Rpbert, Muller, Ratsch, Tsuda, Scholkopf (br0020) March 2001; 12 Liu, Pokharel, Príncipe (br0040) Mar. 2018; 56 Zhang, Peng, Li, Xie (br0130) Mar. 2020; 27 Ghil, Zaliapin, Coluzzi (br0230) 2008; 237 Albu, Nishikawa (br0080) 2017 Xu, Ren (br0070) Jul. 2022; 126 Csató, Opper (br0220) 2002; 14 Aronszajn (br0010) 1950; 68 Alipoor, Skretting (br0060) Sep. 2023; 141 Wang, Wang, Duan (br0260) June 2017; 64 Liang, Li, Han, Xue, Tu (br0170) Apr. 2022; 69 World Data Center SILSO (br0290) 2024 Fan, Song (br0200) 2014; 50 Shen, Ren, Han (br0270) 2020; 95 Huang, Li, Han, Shi, Tu (br0150) Mar. 2023; 70 Platt (br0210) 1991 Shi, Lin, Xie (br0100) Mar. 2014; 50 Zhao, Zhang (br0120) Dec. 2017; 24 Johnson, Vignat (br0140) May 2007; 43 Huang (10.1016/j.dsp.2024.104790_br0150) 2023; 70 Aronszajn (10.1016/j.dsp.2024.104790_br0010) 1950; 68 World Data Center SILSO (10.1016/j.dsp.2024.104790_br0290) 2024 Engel (10.1016/j.dsp.2024.104790_br0030) 2004; 52 Ghil (10.1016/j.dsp.2024.104790_br0230) 2008; 237 Liang (10.1016/j.dsp.2024.104790_br0170) 2022; 69 Csató (10.1016/j.dsp.2024.104790_br0220) 2002; 14 Liu (10.1016/j.dsp.2024.104790_br0040) 2018; 56 Pelekanakis (10.1016/j.dsp.2024.104790_br0110) 2014; 13 Shi (10.1016/j.dsp.2024.104790_br0100) 2014; 50 Ge (10.1016/j.dsp.2024.104790_br0240) 2020; 50 Hoseiniamin (10.1016/j.dsp.2024.104790_br0090) 2023; 70 Rpbert (10.1016/j.dsp.2024.104790_br0020) 2001; 12 Xu (10.1016/j.dsp.2024.104790_br0070) 2022; 126 Liang (10.1016/j.dsp.2024.104790_br0160) 2021; 68 Shen (10.1016/j.dsp.2024.104790_br0270) 2020; 95 Fan (10.1016/j.dsp.2024.104790_br0200) 2014; 50 Chen (10.1016/j.dsp.2024.104790_br0250) 2013; 24 Albu (10.1016/j.dsp.2024.104790_br0050) 2013 Albu (10.1016/j.dsp.2024.104790_br0080) 2017 Wu (10.1016/j.dsp.2024.104790_br0180) 2022; 120 Zhang (10.1016/j.dsp.2024.104790_br0130) 2020; 27 Liu (10.1016/j.dsp.2024.104790_br0190) 2010 Zhao (10.1016/j.dsp.2024.104790_br0120) 2017; 24 Alipoor (10.1016/j.dsp.2024.104790_br0060) 2023; 141 Zheng (10.1016/j.dsp.2024.104790_br0280) 2016; 48 Platt (10.1016/j.dsp.2024.104790_br0210) 1991 Johnson (10.1016/j.dsp.2024.104790_br0140) 2007; 43 Wang (10.1016/j.dsp.2024.104790_br0260) 2017; 64 |
| References_xml | – volume: 43 start-page: 339 year: May 2007 end-page: 351 ident: br0140 article-title: Some results concerning maximum Rényi entropy distributions publication-title: Ann. Inst. Henri Poincaré, PR. – volume: 50 start-page: 899 year: March 2020 end-page: 910 ident: br0240 article-title: Adaptive quantized estimation fusion using strong tracking filtering and variational Bayesian publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 68 start-page: 337 year: 1950 end-page: 404 ident: br0010 article-title: Theory of reproducing kernels publication-title: Trans. Am. Math. Soc. – volume: 64 start-page: 730 year: June 2017 end-page: 734 ident: br0260 article-title: A class of weighted quantized kernel recursive least squares algorithms publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 48 start-page: 130 year: 2016 end-page: 136 ident: br0280 article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series publication-title: Digit. Signal Process. – volume: 56 start-page: 543 year: Mar. 2018 end-page: 554 ident: br0040 article-title: The kernel least mean square algorithm publication-title: IEEE Trans. Signal Process. – volume: 50 start-page: 142 year: 2014 end-page: 153 ident: br0200 article-title: A linear recurrent kernel online learning algorithm with sparse updates publication-title: Neural Netw. – start-page: 213 year: 1991 end-page: 225 ident: br0210 article-title: A Resource-Allocating Network for Function Interpolation, vol. 3 – volume: 126 start-page: 370 year: Jul. 2022 end-page: 376 ident: br0070 article-title: Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction publication-title: ISA Trans. – year: 2024 ident: br0290 article-title: Sunspot Number and Long-Term Solar Observations – volume: 24 start-page: 1484 year: 2013 end-page: 1491 ident: br0250 article-title: Quantized kernel recursive least squares algorithm publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 50 start-page: 466 year: Mar. 2014 end-page: 467 ident: br0100 article-title: Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference publication-title: Electron. Lett. – volume: 13 start-page: 3183 year: Jun. 2014 end-page: 3195 ident: br0110 article-title: Adaptive sparse channel estimation under symmetric publication-title: IEEE Trans. Wirel. Commun. – volume: 27 start-page: 476 year: Mar. 2020 end-page: 480 ident: br0130 article-title: A sparse robust adaptive fifiltering algorithm based on the q-Rényi kernel function publication-title: IEEE Signal Process. Lett. – volume: 14 start-page: 641 year: 2002 end-page: 668 ident: br0220 article-title: Sparse on-line Gaussian processes publication-title: Neural Comput. – start-page: 349 year: 2013 end-page: 353 ident: br0050 article-title: An efficient implementation of the kernel affine projection algorithm publication-title: 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA) – start-page: 87 year: 2017 end-page: 91 ident: br0080 article-title: Low complexity kernel affine projection-type algorithms with a coherence criterion publication-title: 2017 International Conference on Signals and Systems (ICSigSys) – volume: 70 start-page: 1234 year: Mar. 2023 end-page: 1238 ident: br0150 article-title: Affine-projection q-Rényi algorithm for channel estimation under different vehicle velocities and impulsive interference publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 52 start-page: 2275 year: Aug. 2004 end-page: 2285 ident: br0030 article-title: The kernel recursive least squares algorithm publication-title: IEEE Trans. Signal Process. – year: 2010 ident: br0190 article-title: Kernel Adaptive Filtering: A Comprehensive Introduction – volume: 237 start-page: 2967 year: 2008 end-page: 2986 ident: br0230 article-title: Boolean delay equations: a simple way of looking at complex systems publication-title: Physica D – volume: 12 start-page: 181 year: March 2001 end-page: 201 ident: br0020 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans. Neural Netw. – volume: 69 start-page: 2356 year: Apr. 2022 end-page: 2360 ident: br0170 article-title: Channel estimation and beamforming using constrained q-Rényi kernel functioned adaptive algorithm publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 68 start-page: 2227 year: Jun. 2021 end-page: 2231 ident: br0160 article-title: Recursive constrained adaptive algorithm under q-Rényi kernel function publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 95 year: 2020 ident: br0270 article-title: Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction publication-title: Eng. Appl. Artif. Intell. – volume: 141 year: Sep. 2023 ident: br0060 article-title: Kernel recursive least squares dictionary learning algorithm publication-title: Digit. Signal Process. – volume: 70 start-page: 2690 year: July 2023 end-page: 2694 ident: br0090 article-title: A low complexity proportionate generlized correntropy-based diffusion LMS algorithm with closed-form gain coefficients publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 24 start-page: 1832 year: Dec. 2017 end-page: 1836 ident: br0120 article-title: Kernel recursive generalized maximum correntropy publication-title: IEEE Signal Process. Lett. – volume: 120 year: Jan. 2022 ident: br0180 article-title: A quantized adaptive algorithm based on the q-Rényi kernel function publication-title: Digit. Signal Process. – volume: 141 year: 2023 ident: 10.1016/j.dsp.2024.104790_br0060 article-title: Kernel recursive least squares dictionary learning algorithm publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2023.104159 – volume: 95 year: 2020 ident: 10.1016/j.dsp.2024.104790_br0270 article-title: Quantized generalized maximum correntropy criterion based kernel recursive least squares for online time series prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103797 – volume: 68 start-page: 2227 issue: 6 year: 2021 ident: 10.1016/j.dsp.2024.104790_br0160 article-title: Recursive constrained adaptive algorithm under q-Rényi kernel function publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 14 start-page: 641 issue: 2 year: 2002 ident: 10.1016/j.dsp.2024.104790_br0220 article-title: Sparse on-line Gaussian processes publication-title: Neural Comput. doi: 10.1162/089976602317250933 – start-page: 87 year: 2017 ident: 10.1016/j.dsp.2024.104790_br0080 article-title: Low complexity kernel affine projection-type algorithms with a coherence criterion – start-page: 213 year: 1991 ident: 10.1016/j.dsp.2024.104790_br0210 – volume: 50 start-page: 142 year: 2014 ident: 10.1016/j.dsp.2024.104790_br0200 article-title: A linear recurrent kernel online learning algorithm with sparse updates publication-title: Neural Netw. doi: 10.1016/j.neunet.2013.11.011 – volume: 24 start-page: 1484 issue: 9 year: 2013 ident: 10.1016/j.dsp.2024.104790_br0250 article-title: Quantized kernel recursive least squares algorithm publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2013.2258936 – volume: 52 start-page: 2275 issue: 8 year: 2004 ident: 10.1016/j.dsp.2024.104790_br0030 article-title: The kernel recursive least squares algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.830985 – volume: 27 start-page: 476 year: 2020 ident: 10.1016/j.dsp.2024.104790_br0130 article-title: A sparse robust adaptive fifiltering algorithm based on the q-Rényi kernel function publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2020.2978408 – volume: 69 start-page: 2356 issue: 4 year: 2022 ident: 10.1016/j.dsp.2024.104790_br0170 article-title: Channel estimation and beamforming using constrained q-Rényi kernel functioned adaptive algorithm publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – year: 2024 ident: 10.1016/j.dsp.2024.104790_br0290 – volume: 50 start-page: 899 issue: 3 year: 2020 ident: 10.1016/j.dsp.2024.104790_br0240 article-title: Adaptive quantized estimation fusion using strong tracking filtering and variational Bayesian publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2017.2760900 – volume: 12 start-page: 181 issue: 2 year: 2001 ident: 10.1016/j.dsp.2024.104790_br0020 article-title: An introduction to kernel-based learning algorithms publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.914517 – volume: 48 start-page: 130 year: 2016 ident: 10.1016/j.dsp.2024.104790_br0280 article-title: A modified quantized kernel least mean square algorithm for prediction of chaotic time series publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2015.09.015 – volume: 56 start-page: 543 issue: 2 year: 2018 ident: 10.1016/j.dsp.2024.104790_br0040 article-title: The kernel least mean square algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2007.907881 – volume: 13 start-page: 3183 issue: 6 year: 2014 ident: 10.1016/j.dsp.2024.104790_br0110 article-title: Adaptive sparse channel estimation under symmetric α-stable noise publication-title: IEEE Trans. Wirel. Commun. doi: 10.1109/TWC.2014.042314.131432 – year: 2010 ident: 10.1016/j.dsp.2024.104790_br0190 – volume: 64 start-page: 730 issue: 6 year: 2017 ident: 10.1016/j.dsp.2024.104790_br0260 article-title: A class of weighted quantized kernel recursive least squares algorithms publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 50 start-page: 466 issue: 6 year: 2014 ident: 10.1016/j.dsp.2024.104790_br0100 article-title: Combination of affine projection sign algorithms for robust adaptive filtering in non-Gaussian impulsive interference publication-title: Electron. Lett. doi: 10.1049/el.2013.3997 – volume: 237 start-page: 2967 issue: 23 year: 2008 ident: 10.1016/j.dsp.2024.104790_br0230 article-title: Boolean delay equations: a simple way of looking at complex systems publication-title: Physica D doi: 10.1016/j.physd.2008.07.006 – start-page: 349 year: 2013 ident: 10.1016/j.dsp.2024.104790_br0050 article-title: An efficient implementation of the kernel affine projection algorithm – volume: 43 start-page: 339 year: 2007 ident: 10.1016/j.dsp.2024.104790_br0140 article-title: Some results concerning maximum Rényi entropy distributions publication-title: Ann. Inst. Henri Poincaré, PR. doi: 10.1016/j.anihpb.2006.05.001 – volume: 68 start-page: 337 issue: 3 year: 1950 ident: 10.1016/j.dsp.2024.104790_br0010 article-title: Theory of reproducing kernels publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1950-0051437-7 – volume: 70 start-page: 2690 issue: 7 year: 2023 ident: 10.1016/j.dsp.2024.104790_br0090 article-title: A low complexity proportionate generlized correntropy-based diffusion LMS algorithm with closed-form gain coefficients publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 70 start-page: 1234 issue: 3 year: 2023 ident: 10.1016/j.dsp.2024.104790_br0150 article-title: Affine-projection q-Rényi algorithm for channel estimation under different vehicle velocities and impulsive interference publication-title: IEEE Trans. Circuits Syst. II, Express Briefs – volume: 126 start-page: 370 year: 2022 ident: 10.1016/j.dsp.2024.104790_br0070 article-title: Random Fourier feature kernel recursive maximum mixture correntropy algorithm for online time series prediction publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.08.014 – volume: 24 start-page: 1832 issue: 12 year: 2017 ident: 10.1016/j.dsp.2024.104790_br0120 article-title: Kernel recursive generalized maximum correntropy publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2761886 – volume: 120 year: 2022 ident: 10.1016/j.dsp.2024.104790_br0180 article-title: A quantized adaptive algorithm based on the q-Rényi kernel function publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2021.103255 |
| SSID | ssj0007426 |
| Score | 2.3897803 |
| Snippet | This paper introduces the kernel recursive q-Rényi-like (KRqRL) algorithm, based on the q-Rényi kernel function and the kernel recursive least squares (KRLS)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104790 |
| SubjectTerms | Non-Gaussian noise conditions Online prediction Online vector quantization q-Rényi kernel function |
| Title | Quantized kernel recursive q-Rényi-like algorithm |
| URI | https://dx.doi.org/10.1016/j.dsp.2024.104790 |
| Volume | 156 |
| WOSCitedRecordID | wos001331646900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1051-2004 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0007426 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZgygEOqGzqQlEOnBhlNEnsOD5WpVXhULGUajhF8ZI2ndQps5SWf8Tv4I_xHCdOKBTRA5doZCVvMv6en795fgtCL4GExJjmgS9jRX2MM-bzKCN-ggM6ZjSHLUTUzSbowUEymbB3TVjzvG4nQLVOLi_Z-X-FGsYAbJM6ewu4nVAYgM8AOlwBdrj-E_DvlzBZxTcgklM108rU7RfGJXChhl_8D_ZgXF8VfllM1TArj6tZsTg565PU18WxaSUyNLEdJlHL5hK0e1ztZa6WdXCe0l-7VDLne_6c6bNCdwrTDO-cLHVZdVKOqhIs7bT21X40SaBXw6NR3wsRkp4XwhpOWNwWhr5lJX3baIpC2Nagv5lt60E4Hcm5KSEa4lF3768lsq9tXS6gsI1VO01BRGpEpFbEXbQSUsKSAVrZfrM7eet2aYrrVnzuvdsT7zr279p7_Jmz9HjI4Sp62PyB8LYt8I_QHaUfowe9spJPUOhUwLMq4DkV8EAFfnxv4fcc_E_Rp73dw519v-mN4YuQ0QWsJaIIz-OMYZWEjGSGWAZSJoJwnrBYqoArFghBWJjn5iw0ZjyPONjnWOJcRs_QQFdarSHPdBAAFhlFlEtMCc2wCCUWsLpZlI15tI7G7a9PRVM43vQvKdMbZ30dvXKPnNuqKX-7GbdTmja0z9K5FNTj5sc2bvMdm-h-p7XP0WAxW6otdE9cLIr57EWjGz8BWaV1sA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+kernel+recursive+q-R%C3%A9nyi-like+algorithm&rft.jtitle=Digital+signal+processing&rft.au=Zhou%2C+Wenwen&rft.au=Zhang%2C+Yanmin&rft.au=Huang%2C+Chunlong&rft.au=Volvenko%2C+Sergey+V.&rft.date=2025-01-01&rft.issn=1051-2004&rft.volume=156&rft.spage=104790&rft_id=info:doi/10.1016%2Fj.dsp.2024.104790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dsp_2024_104790 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-2004&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-2004&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-2004&client=summon |