Balancing exploration and exploitation in multiobjective evolutionary optimization

The tradeoff between exploration and exploitation is critical to the performance of an evolutionary algorithm. Different levels of exploration-exploitation tradeoff are required at different evolutionary stages for achieving a satisfactory performance of an evolutionary algorithm. In this paper, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information sciences Jg. 497; S. 129 - 148
Hauptverfasser: Zhang, Hu, Sun, Jianyong, Liu, Tonglin, Zhang, Ke, Zhang, Qingfu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.09.2019
Schlagworte:
ISSN:0020-0255, 1872-6291
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The tradeoff between exploration and exploitation is critical to the performance of an evolutionary algorithm. Different levels of exploration-exploitation tradeoff are required at different evolutionary stages for achieving a satisfactory performance of an evolutionary algorithm. In this paper, we propose a novel survival analysis method to intelligently guide the maintenance of the exploration-exploitation tradeoff in multiobjective evolutionary algorithms. The survival analysis stems from a deep understanding of the evolutionary search procedure. Through survival analysis, an indicator is derived, which is used to guide the adoption of appropriate recombination operators, based on the assumption that the roles of these operators in terms of their capabilities on exploration-exploitation can be asserted. In the developed algorithm, a differential evolution recombination operator and a new sampling strategy are hybridized. Empirical comparison with five well-known multiobjective evolutionary algorithms on a number of test instances with complex Pareto sets and Pareto fronts indicates the effectiveness and superiority of the developed algorithm in terms of commonly-used performance metrics on these test instances.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2019.05.046