Local structure-preserving algorithms for the “good” Boussinesq equation
In this paper, we derive a series of local structure-preserving algorithms for the “good” Boussinesq equation, including multisymplectic geometric structure-preserving algorithms, local energy-preserving algorithms and local momentum-preserving algorithms. The outstanding advantage of the proposed a...
Uloženo v:
| Vydáno v: | Journal of computational physics Ročník 239; s. 72 - 89 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
15.04.2013
|
| Témata: | |
| ISSN: | 0021-9991, 1090-2716 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we derive a series of local structure-preserving algorithms for the “good” Boussinesq equation, including multisymplectic geometric structure-preserving algorithms, local energy-preserving algorithms and local momentum-preserving algorithms. The outstanding advantage of the proposed algorithms is that they conserve these local structures in any time-space region exactly. For example, the proposed local energy-preserving algorithms preserve the local energy conservation law in any local domain. Therefore, the local structure-preserving algorithms overcome the shortage of global structure-preserving algorithms on the boundary conditions. Especially, with suitable boundary conditions such as periodic or homogeneous boundary conditions, the local structure-preserving algorithms will be global structure-preserving algorithms. Numerical results verify the theoretical analysis. |
|---|---|
| ISSN: | 0021-9991 1090-2716 |
| DOI: | 10.1016/j.jcp.2013.01.009 |