Small-strain folding of semi-rigid elastomer derives high-performance 3D-printable soft origami actuators
[Display omitted] •The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is utilized to generate motion.•Fabrication by Selective Laser Sintering printing with post-treatment is obtained.•Achieve superior performance in li...
Saved in:
| Published in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Vol. 489; p. 151462 |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.06.2024
|
| Subjects: | |
| ISSN: | 1385-8947 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | [Display omitted]
•The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is utilized to generate motion.•Fabrication by Selective Laser Sintering printing with post-treatment is obtained.•Achieve superior performance in lifespan, linearity, energy efficiency, and force.•The SSF actuators benefit the development of soft robots and their performance.
Elastomers with hyperelastic deformation bring prosperity to soft robotics, especially in constituting fluidic actuators, largely due to the merit of large deformation and airtightness. However, the large (typically 0.5–1.5 strain) in-plane stretching of such materials concurrent to motion generation inevitably causes energy loss, hinders force output and accuracy. Particularly, the high nonlinearity of the low-durometer (typically 10A to 30A Shore) hyperelastic elastomers makes the modeling and control of actuators a well-known challenge. In this work, we proposed an alternative approach of using semi-rigid elastomer of significantly larger durometer (70 A–100 A) to create the typical fluidic soft actuator with axial translation, by utilizing small-strain folding to generate motion. Deformation constraints and property programming are combined into a single-piece body, enabling easy fabrication by Selective Laser Sintering 3D-printing and post-treatment for origami patterned structure. Systematic analyses on the principles, modeling and design are presented. The long lifespan (over 1 million cycles), superior output linearity, high energy efficiency (more than 60% increase), and drastically improved force output (more than 98% increase) were validated experimentally, showing high potentials in enabling high-performance soft actuators that are easy to design, fabricate and drive, strong to use, and accurate to control, towards even wider applications. |
|---|---|
| AbstractList | [Display omitted]
•The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is utilized to generate motion.•Fabrication by Selective Laser Sintering printing with post-treatment is obtained.•Achieve superior performance in lifespan, linearity, energy efficiency, and force.•The SSF actuators benefit the development of soft robots and their performance.
Elastomers with hyperelastic deformation bring prosperity to soft robotics, especially in constituting fluidic actuators, largely due to the merit of large deformation and airtightness. However, the large (typically 0.5–1.5 strain) in-plane stretching of such materials concurrent to motion generation inevitably causes energy loss, hinders force output and accuracy. Particularly, the high nonlinearity of the low-durometer (typically 10A to 30A Shore) hyperelastic elastomers makes the modeling and control of actuators a well-known challenge. In this work, we proposed an alternative approach of using semi-rigid elastomer of significantly larger durometer (70 A–100 A) to create the typical fluidic soft actuator with axial translation, by utilizing small-strain folding to generate motion. Deformation constraints and property programming are combined into a single-piece body, enabling easy fabrication by Selective Laser Sintering 3D-printing and post-treatment for origami patterned structure. Systematic analyses on the principles, modeling and design are presented. The long lifespan (over 1 million cycles), superior output linearity, high energy efficiency (more than 60% increase), and drastically improved force output (more than 98% increase) were validated experimentally, showing high potentials in enabling high-performance soft actuators that are easy to design, fabricate and drive, strong to use, and accurate to control, towards even wider applications. |
| ArticleNumber | 151462 |
| Author | Wu, Yige Chen, Fang Wang, Zheng Duanmu, Dehao Wang, Yaxi Liu, Sicong Yang, Wenjian Liu, Jianhui Dai, Jian S. Zhu, Yuming Yi, Juan |
| Author_xml | – sequence: 1 givenname: Sicong orcidid: 0000-0002-1872-5283 surname: Liu fullname: Liu, Sicong organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 2 givenname: Fang surname: Chen fullname: Chen, Fang organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 3 givenname: Dehao orcidid: 0000-0002-9227-1945 surname: Duanmu fullname: Duanmu, Dehao organization: Orthopedic Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China – sequence: 4 givenname: Yaxi orcidid: 0009-0008-7340-6593 surname: Wang fullname: Wang, Yaxi organization: Department of Mechanical Engineering, University College London, Gower Street, London, United Kingdom – sequence: 5 givenname: Jianhui surname: Liu fullname: Liu, Jianhui organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 6 givenname: Wenjian surname: Yang fullname: Yang, Wenjian organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 7 givenname: Yuming orcidid: 0000-0002-5124-8298 surname: Zhu fullname: Zhu, Yuming organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 8 givenname: Yige surname: Wu fullname: Wu, Yige organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 9 givenname: Juan orcidid: 0000-0002-5992-4254 surname: Yi fullname: Yi, Juan organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 10 givenname: Jian S. surname: Dai fullname: Dai, Jian S. organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China – sequence: 11 givenname: Zheng orcidid: 0000-0002-7726-0770 surname: Wang fullname: Wang, Zheng email: zheng.wang@ieee.org organization: Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518000, China |
| BookMark | eNp90L1OwzAQwHEPRaItPACbXyDBH4mTiAmVT6kSAzBbF-fcOkriyjaVeHtSlYmB6abf6e6_IovJT0jIDWc5Z1zd9rnBPhdMFDkveaHEgiy5rMusborqkqxi7BljquHNkrj3EYYhiymAm6j1Q-emHfWWRhxdFtzOdRQHiMmPGGiHwR0x0r3b7bMDBuvDCJNBKh-yQ3BTgnZAGr1N1M8WRkfBpC9IPsQrcmFhiHj9O9fk8-nxY_OSbd-eXzf328yIpkqZ4iAKaJUUCkVbAIBlBlTVsUqVpShN0cq6VcYUVlai5RVjUMvONtIg2obLNeHnvSb4GANaPV82QvjWnOlTH93ruY8-9dHnPrOp_hjjEiTnp1OX4V95d5Y4v3R0GHQ0DucknQtoku68-0f_ANx6hfo |
| CitedBy_id | crossref_primary_10_1002_advs_202409060 crossref_primary_10_1007_s40964_025_01073_w crossref_primary_10_1016_j_oceaneng_2025_120998 |
| Cites_doi | 10.1038/s41578-018-0002-2 10.1371/journal.pone.0204637 10.1002/adma.201203002 10.1016/j.mattod.2017.10.010 10.1115/DETC2014-34567 10.1002/pen.24633 10.1109/TMECH.2022.3195985 10.1088/0964-1726/24/10/105031 10.1089/soro.2018.0030 10.1109/LRA.2021.3131701 10.1109/TRO.2018.2871440 10.1002/adfm.201303288 10.1177/0278364920917203 10.3389/frobt.2021.614623 10.1109/LRA.2020.2974438 10.1038/nature19100 10.3389/frobt.2023.1210217 10.1016/j.mechmat.2004.08.001 10.1088/1748-3190/10/5/055003 10.1126/scirobotics.abn4155 10.1109/TMECH.2020.3045476 10.1089/soro.2016.0030 10.1115/1.4054731 10.1016/j.ijmecsci.2015.05.009 10.1038/s41467-023-37343-w 10.1002/anie.201006464 10.1038/s41467-023-39980-7 10.1109/TMECH.2016.2638468 10.1002/adfm.201806698 10.1115/1.4031953 10.1126/scirobotics.aay3493 10.1115/DETC2013-12947 10.1073/pnas.1713450114 10.1108/RPJ-11-2019-0302 10.1038/nature14543 10.1089/soro.2014.0008 10.1089/soro.2016.0023 10.1073/pnas.1116564108 10.1002/adma.202003387 10.1109/CYBER46603.2019.9066517 10.1016/j.mechmachtheory.2018.08.010 10.1002/adfm.201102978 10.1038/s41586-020-03153-z 10.1038/s41578-021-00389-7 10.1007/s42242-020-00099-z |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cej.2024.151462 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_cej_2024_151462 S1385894724029498 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABFYP ABLST ABMAC ABNUV ABUDA ACDAQ ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AENEX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHPOS AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSG SSJ SSZ T5K ~G- 9DU AATTM AAYWO AAYXX ABXDB ACLOT ACVFH ADCNI AEIPS AEUPX AFFNX AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BKOMP CITATION EFKBS EFLBG EJD FEDTE FGOYB HVGLF HZ~ R2- ZY4 ~HD |
| ID | FETCH-LOGICAL-c297t-61a24ab6326e2b4aaaf0ca67d0765525c4b38b6cc4f372b1700a83df93ceef913 |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001234651500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1385-8947 |
| IngestDate | Tue Nov 18 21:16:33 EST 2025 Sat Nov 29 03:30:53 EST 2025 Sat Nov 09 16:00:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Origami Semi-rigid elastomer Small-strain folding SLS printing Soft actuator |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-61a24ab6326e2b4aaaf0ca67d0765525c4b38b6cc4f372b1700a83df93ceef913 |
| ORCID | 0000-0002-5124-8298 0000-0002-5992-4254 0009-0008-7340-6593 0000-0002-7726-0770 0000-0002-1872-5283 0000-0002-9227-1945 |
| ParticipantIDs | crossref_primary_10_1016_j_cej_2024_151462 crossref_citationtrail_10_1016_j_cej_2024_151462 elsevier_sciencedirect_doi_10_1016_j_cej_2024_151462 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Chemical engineering journal (Lausanne, Switzerland : 1996) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Yang, Wang, Branson, Dai, Kang (b0035) 2018; 130 Rus, Tolley (b0005) 2015; 521 Wehner, Truby, Fitzgerald, Mosadegh, Whitesides, Lewis, Wood (b0050) 2016; 536 Pascali, Naselli, Palagi, Scharff, Mazzolai (b0150) 2022; 7 Martinez, Branch, Fish, Jin, Shepherd, Nunes, Suo, Whitesides (b0245) 2013; 25 S. Liu, W. Lv, Y. Chen, G. Lu, Deployable prismatic structures with origami patterns, in: Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 38th Mechanisms and Robotics Conference. Buffalo, New York, USA, 2014. https://doi.org/10.1115/DETC2014-34567. Zhang, Zhu, Lin, Tang, Jiao, Yang, Zou (b0065) 2021; 4 Tolley, Shepherd, Mosadegh, Galloway, Wehner, Karpelson, Wood, Whitesides (b0070) 2014; 1 Liu, Liu, Zou, Wang, Fang, Yi, Wang (b0185) 2022; 14 Wang, Polygerinos, Overvelde, Galloway, Bertoldi, Walsh (b0025) 2017; 22 SachyaniKeneth, Kamyshny, Totaro, Beccai, Magdassi (b0060) 2021; 33 Su, Fang, Zhu, Sun, Zhu, Wang, Tang, Huang, Liu, Wang (b0135) 2020; 5 Y. Guo, X. Chen, Z. Wang, Environmental insulation of 3d printable origamic soft actuators, in: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 2019. http://doi.org/10.1109/CYBER46603.2019.9066517. Byrne, Coulter, Glynn, Jones, Annaidh, O'Cearbhaill, Holland (b0165) 2018; 5 Martinez, Fish, Chen, Whitesides (b0090) 2012; 22 Zhang, Zhang, Peng, Zhang, An, Wang, Zhai, Xu, Jiang (b0120) 2023; 14 assets › Elastollan, 2023 (accessed February 2023). Yap, Ng, Yeow (b0160) 2016; 3 Smooth-On, Shore Hardness Scales Shepherd, Ilievski, Choi, Morin, Stokes, Mazzeo, Chen, Wang, Whitesides (b0040) 2011; 108 Kim, Byun, Kim, Choi, Jakobsen, Jakobsen, Lee, Cho (b0145) 2019; 4 Skorina, Luo, Oo, Tao, Chen, Youssefian, Rahbar, Onal (b0030) 2018; 13 Mosadegh, Polygerinos, Keplinger, Wennstedt, Shepherd, Gupta, Shim, Bertoldi, Walsh, Whitesides (b0020) 2014; 24 Yi, Chen, Song, Zhou, Liu, Liu, Wang (b0110) 2019; 35 Liu, Liu, Yang, Yi, Wang, Zhang, Dai, Wang (b0125) 2024 Li, Wang (b0130) 2015; 24 Liu, Zhu, Zhang, Fang, Tan, Peng, Song, Asada, Wang (b0045) 2020; 26 Li, Chen, Zhou, Liang, Xiao, Cao, Zhang, Zhang, Wu, Yin, Xu, Fan, Chen, Song, Yang, Pan, Hou, Zou, He, Yang, Mao, Jia, Zhou, Li, Qu, Xu, Huang, Luo, Xie, Gu, Zhu, Yang (b0075) 2021; 591 Zhang, Zhang, Hingorani, Ding, Wang, Yuan, Zhang, Gu, Ge (b0255) 2019; 29 Scharff, Doubrovski, Poelman, Jonker, Wang, Geraedts (b0170) 2016 Liu, Wang, Liu, Yi, Wang, Wang (b0180) 2022; 7 Paez, Agarwal, Paik (b0250) 2016; 3 S. Liu, Y. Chen, G. Lu, The rigid origami patterns for flat surface, in: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6B, ASME, Portland, Oregon, USA, 2013. https://doi.org/10.1115/DETC2013-12947. Gong, Fang, Chen, Cheng, Xie, Liu, Chen, Yang, Kong, Yufei Hao, Wang, Yu (b0240) 2021; 40 Datta, Kasprzyk (b0210) 2018; 58 Wallin, Pikul, Shepherd (b0055) 2018; 3 2023 (accessed February 2023). Li, Fang, Sadeghi, Bhovad, Wang (b0115) 2019; 31 Zhu, Lu, Zheng, Fang, Che, Tang, Zhu, Liu, Wang (b0230) 2022; 28 Tang, Tang, Wu, Xiao, Liu, Yi, Wang (b0195) 2023; 10 Ye, Liu, Cheng, Li, Jian, Wang, Sun, Lu, Ge (b0155) 2023; 14 Yap, Sing, Yeong (b0215) 2020; 26 BASF, Physical properties – Plastics & Rubber Peele, Wallin, Zhao, Shepherd (b0080) 2015; 10 Liu, Lv, Chen, Lu (b0105) 2016; 8 Qi, Boyce (b0225) 2005; 37 Li, Pal, Aghakhani, Pena-Francesch, Sitti (b0010) 2022; 7 Bergström (b0085) 2015 Li, Vogt, Rus, Wood (b0140) 2017; 114 Wang, Yang, Chen, Majidi, Iida, Askounis, Pei (b0200) 2018; 21 Liu, Lu, Chen, Leong (b0095) 2015; 99 Ilievski, Mazzeo, Shepherd, Chen, Whitesides (b0015) 2011; 50 Liu, Fang, Liu, Tang, Luo, Yi, Hu, Wang (b0190) 2021; 8 Liu (10.1016/j.cej.2024.151462_b0045) 2020; 26 Ye (10.1016/j.cej.2024.151462_b0155) 2023; 14 Rus (10.1016/j.cej.2024.151462_b0005) 2015; 521 Martinez (10.1016/j.cej.2024.151462_b0245) 2013; 25 Yap (10.1016/j.cej.2024.151462_b0160) 2016; 3 Gong (10.1016/j.cej.2024.151462_b0240) 2021; 40 Wallin (10.1016/j.cej.2024.151462_b0055) 2018; 3 10.1016/j.cej.2024.151462_b0235 Qi (10.1016/j.cej.2024.151462_b0225) 2005; 37 Liu (10.1016/j.cej.2024.151462_b0185) 2022; 14 Tolley (10.1016/j.cej.2024.151462_b0070) 2014; 1 Zhang (10.1016/j.cej.2024.151462_b0065) 2021; 4 SachyaniKeneth (10.1016/j.cej.2024.151462_b0060) 2021; 33 Liu (10.1016/j.cej.2024.151462_b0190) 2021; 8 Zhang (10.1016/j.cej.2024.151462_b0255) 2019; 29 Kim (10.1016/j.cej.2024.151462_b0145) 2019; 4 Byrne (10.1016/j.cej.2024.151462_b0165) 2018; 5 Paez (10.1016/j.cej.2024.151462_b0250) 2016; 3 Li (10.1016/j.cej.2024.151462_b0010) 2022; 7 10.1016/j.cej.2024.151462_b0100 Zhu (10.1016/j.cej.2024.151462_b0230) 2022; 28 10.1016/j.cej.2024.151462_b0220 Ilievski (10.1016/j.cej.2024.151462_b0015) 2011; 50 Wang (10.1016/j.cej.2024.151462_b0025) 2017; 22 Skorina (10.1016/j.cej.2024.151462_b0030) 2018; 13 Liu (10.1016/j.cej.2024.151462_b0125) 2024 Peele (10.1016/j.cej.2024.151462_b0080) 2015; 10 Yap (10.1016/j.cej.2024.151462_b0215) 2020; 26 Li (10.1016/j.cej.2024.151462_b0140) 2017; 114 Liu (10.1016/j.cej.2024.151462_b0105) 2016; 8 Wehner (10.1016/j.cej.2024.151462_b0050) 2016; 536 10.1016/j.cej.2024.151462_b0175 Yi (10.1016/j.cej.2024.151462_b0110) 2019; 35 Li (10.1016/j.cej.2024.151462_b0115) 2019; 31 Li (10.1016/j.cej.2024.151462_b0075) 2021; 591 Mosadegh (10.1016/j.cej.2024.151462_b0020) 2014; 24 Shepherd (10.1016/j.cej.2024.151462_b0040) 2011; 108 Martinez (10.1016/j.cej.2024.151462_b0090) 2012; 22 10.1016/j.cej.2024.151462_b0205 Zhang (10.1016/j.cej.2024.151462_b0120) 2023; 14 Li (10.1016/j.cej.2024.151462_b0130) 2015; 24 Su (10.1016/j.cej.2024.151462_b0135) 2020; 5 Wang (10.1016/j.cej.2024.151462_b0200) 2018; 21 Scharff (10.1016/j.cej.2024.151462_b0170) 2016 Bergström (10.1016/j.cej.2024.151462_b0085) 2015 Chen (10.1016/j.cej.2024.151462_b0035) 2018; 130 Liu (10.1016/j.cej.2024.151462_b0180) 2022; 7 Liu (10.1016/j.cej.2024.151462_b0095) 2015; 99 Pascali (10.1016/j.cej.2024.151462_b0150) 2022; 7 Tang (10.1016/j.cej.2024.151462_b0195) 2023; 10 Datta (10.1016/j.cej.2024.151462_b0210) 2018; 58 |
| References_xml | – volume: 28 start-page: 104 year: 2022 end-page: 115 ident: b0230 article-title: A soft-rigid hybrid gripper with lateral compliance and dexterous in-hand manipulation publication-title: IEEE-ASME Trans. Mechatron. – volume: 26 start-page: 2747 year: 2020 end-page: 2757 ident: b0045 article-title: Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami publication-title: IEEE-ASME Trans. Mechatron. – volume: 24 year: 2015 ident: b0130 article-title: Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning publication-title: Smart Mater. Struct. – volume: 7 year: 2022 ident: b0150 article-title: 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate publication-title: Sci. Robot. – volume: 14 start-page: 1607 year: 2023 ident: b0155 article-title: Multimaterial 3D printed self-locking thick-panel origami metamaterials publication-title: Nat. Commun. – volume: 31 year: 2019 ident: b0115 article-title: Architected origami materials: how folding creates sophisticated mechanical properties publication-title: Adv. Mater. – volume: 4 start-page: 123 year: 2021 end-page: 145 ident: b0065 article-title: Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications publication-title: Bio-Des. Manuf. – volume: 8 year: 2021 ident: b0190 article-title: A compact soft robotic wrist brace with origami actuators publication-title: Front. Robot. AI. – volume: 99 start-page: 130 year: 2015 end-page: 142 ident: b0095 article-title: Deformation of the Miura-ori patterned sheet publication-title: Int. J. Mech. Sci. – volume: 3 start-page: 144 year: 2016 end-page: 158 ident: b0160 article-title: High-force soft printable pneumatics for soft robotic applications publication-title: Soft Robot. – volume: 14 start-page: 4329 year: 2023 ident: b0120 article-title: Plug & play origami modules with all-purpose deformation modes publication-title: Nat. Commun. – volume: 5 start-page: 726 year: 2018 end-page: 736 ident: b0165 article-title: Additive manufacture of composite soft pneumatic actuators publication-title: Soft Robot. – volume: 130 start-page: 109 year: 2018 end-page: 122 ident: b0035 article-title: Design and modeling of a soft robotic surface with hyperelastic material publication-title: Mech. Mach. Theory – volume: 536 start-page: 451 year: 2016 end-page: 455 ident: b0050 article-title: An integrated design and fabrication strategy for entirely soft, autonomous robots publication-title: Nature – volume: 14 year: 2022 ident: b0185 article-title: A six degrees-of-freedom soft robotic joint with tilt-arranged origami actuator publication-title: J. Mech. Robot. – volume: 50 start-page: 1890 year: 2011 end-page: 1895 ident: b0015 article-title: Soft robotics for chemists publication-title: Angew. Chem. – volume: 521 start-page: 467 year: 2015 end-page: 475 ident: b0005 article-title: Design, fabrication and control of soft robots publication-title: Nature – volume: 58 start-page: E14 year: 2018 end-page: E35 ident: b0210 article-title: Thermoplastic polyurethanes derived from petrochemical or renewable resources: a comprehensive review publication-title: Polym. Eng. Sci. – volume: 29 start-page: 1806698 year: 2019 ident: b0255 article-title: Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing publication-title: Adv. Funct. Mater. – volume: 13 start-page: e0204637 year: 2018 ident: b0030 article-title: Reverse pneumatic artificial muscles (rPAMs): modeling, integration, and control publication-title: PLoS One – volume: 25 start-page: 205 year: 2013 end-page: 212 ident: b0245 article-title: Robotic tentacles with three-dimensional mobility based on flexible elastomers publication-title: Adv. Mater. – volume: 1 start-page: 213 year: 2014 end-page: 223 ident: b0070 article-title: A resilient, untethered soft robot publication-title: Soft Robot. – reference: S. Liu, W. Lv, Y. Chen, G. Lu, Deployable prismatic structures with origami patterns, in: Proceedings of the ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 38th Mechanisms and Robotics Conference. Buffalo, New York, USA, 2014. https://doi.org/10.1115/DETC2014-34567. – year: 2024 ident: b0125 article-title: Origami-patterned rigidification for soft robotic bifurcation publication-title: Adv. Intell. Syst. – volume: 37 start-page: 817 year: 2005 end-page: 839 ident: b0225 article-title: Stress–strain behavior of thermoplastic polyurethanes publication-title: Mech. Mater. – volume: 3 start-page: 84 year: 2018 end-page: 100 ident: b0055 article-title: 3D printing of soft robotic systems publication-title: Nat. Rev. Mater. – volume: 4 year: 2019 ident: b0145 article-title: Bioinspired dual-morphing stretchable origami publication-title: Sci. Robot. – reference: › assets › Elastollan, 2023 (accessed February 2023). – volume: 114 start-page: 13132 year: 2017 end-page: 13137 ident: b0140 article-title: Fluid-driven origami-inspired artificial muscles publication-title: Proc. Natl. Acad. Sci. – volume: 7 start-page: 658 year: 2022 end-page: 665 ident: b0180 article-title: Vertebraic soft robotic joint design with twisting and antagonism publication-title: IEEE Robot. Autom. Lett. – volume: 24 start-page: 2163 year: 2014 end-page: 2170 ident: b0020 article-title: Pneumatic networks for soft robotics that actuate rapidly publication-title: Adv. Funct. Mater. – volume: 22 start-page: 1376 year: 2012 end-page: 1384 ident: b0090 article-title: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1210217 year: 2023 ident: b0195 article-title: Performance enhancement of the soft robotic segment for a trunk-like arm publication-title: Front. Robot. AI. – reference: BASF, Physical properties – Plastics & Rubber, – volume: 40 start-page: 449 year: 2021 end-page: 469 ident: b0240 article-title: A soft manipulator for efficient delicate grasping in shallow water: modeling, control, and real-world experiments publication-title: Int. J. Robot. Res. – volume: 108 start-page: 20400 year: 2011 end-page: 20403 ident: b0040 article-title: Multigait soft robot publication-title: Proc. Natl. Acad. Sci. – volume: 5 start-page: 3003 year: 2020 end-page: 3010 ident: b0135 article-title: A high-payload proprioceptive hybrid robotic gripper with soft origamic actuators publication-title: IEEE Robot. Autom. Lett. – volume: 33 start-page: 2003387 year: 2021 ident: b0060 article-title: 3D printing materials for soft robotics publication-title: Adv. Mater. – reference: Y. Guo, X. Chen, Z. Wang, Environmental insulation of 3d printable origamic soft actuators, in: 2019 IEEE 9th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Suzhou, China, 2019. http://doi.org/10.1109/CYBER46603.2019.9066517. – volume: 8 year: 2016 ident: b0105 article-title: Deployable prismatic structures with rigid origami patterns publication-title: J. Mech. Robot. – volume: 10 year: 2015 ident: b0080 article-title: 3D printing antagonistic systems of artificial muscle using projection stereolithography publication-title: Bioinspir. Biomim. – volume: 7 start-page: 235 year: 2022 end-page: 249 ident: b0010 article-title: Soft actuators for real-world applications publication-title: Nat. Rev. Mater. – year: 2015 ident: b0085 article-title: Mechanics of Solid Polymers – volume: 22 start-page: 717 year: 2017 end-page: 727 ident: b0025 article-title: Interaction forces of soft fiber reinforced bending actuators publication-title: IEEE-ASME Trans. Mechatron. – volume: 3 start-page: 109 year: 2016 end-page: 119 ident: b0250 article-title: Design and analysis of a soft pneumatic actuator with origami shell reinforcement publication-title: Soft Robot. – volume: 21 start-page: 563 year: 2018 end-page: 576 ident: b0200 article-title: Controllable and reversible tuning of material rigidity for robot applications publication-title: Mater. Today – reference: S. Liu, Y. Chen, G. Lu, The rigid origami patterns for flat surface, in: ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6B, ASME, Portland, Oregon, USA, 2013. https://doi.org/10.1115/DETC2013-12947. – reference: Smooth-On, Shore Hardness Scales, – volume: 26 start-page: 1345 year: 2020 end-page: 1361 ident: b0215 article-title: A review of 3D printing processes and materials for soft robotics publication-title: Rapid Prototyp. J. – year: 2016 ident: b0170 article-title: Soft Robotics: Trends, Applications and Challenges – volume: 591 start-page: 66 year: 2021 end-page: 71 ident: b0075 article-title: Self-powered soft robot in the Mariana Trench publication-title: Nature – volume: 35 start-page: 114 year: 2019 end-page: 123 ident: b0110 article-title: Customizable three-dimensional-printed origami soft robotic joint with effective behavior shaping for safe interactions publication-title: IEEE Trans. Robot. – reference: , 2023 (accessed February 2023). – volume: 3 start-page: 84 year: 2018 ident: 10.1016/j.cej.2024.151462_b0055 article-title: 3D printing of soft robotic systems publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-018-0002-2 – volume: 13 start-page: e0204637 year: 2018 ident: 10.1016/j.cej.2024.151462_b0030 article-title: Reverse pneumatic artificial muscles (rPAMs): modeling, integration, and control publication-title: PLoS One doi: 10.1371/journal.pone.0204637 – volume: 25 start-page: 205 year: 2013 ident: 10.1016/j.cej.2024.151462_b0245 article-title: Robotic tentacles with three-dimensional mobility based on flexible elastomers publication-title: Adv. Mater. doi: 10.1002/adma.201203002 – volume: 21 start-page: 563 year: 2018 ident: 10.1016/j.cej.2024.151462_b0200 article-title: Controllable and reversible tuning of material rigidity for robot applications publication-title: Mater. Today doi: 10.1016/j.mattod.2017.10.010 – ident: 10.1016/j.cej.2024.151462_b0100 doi: 10.1115/DETC2014-34567 – volume: 58 start-page: E14 year: 2018 ident: 10.1016/j.cej.2024.151462_b0210 article-title: Thermoplastic polyurethanes derived from petrochemical or renewable resources: a comprehensive review publication-title: Polym. Eng. Sci. doi: 10.1002/pen.24633 – volume: 28 start-page: 104 year: 2022 ident: 10.1016/j.cej.2024.151462_b0230 article-title: A soft-rigid hybrid gripper with lateral compliance and dexterous in-hand manipulation publication-title: IEEE-ASME Trans. Mechatron. doi: 10.1109/TMECH.2022.3195985 – volume: 24 year: 2015 ident: 10.1016/j.cej.2024.151462_b0130 article-title: Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/24/10/105031 – volume: 5 start-page: 726 year: 2018 ident: 10.1016/j.cej.2024.151462_b0165 article-title: Additive manufacture of composite soft pneumatic actuators publication-title: Soft Robot. doi: 10.1089/soro.2018.0030 – volume: 7 start-page: 658 year: 2022 ident: 10.1016/j.cej.2024.151462_b0180 article-title: Vertebraic soft robotic joint design with twisting and antagonism publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3131701 – volume: 35 start-page: 114 year: 2019 ident: 10.1016/j.cej.2024.151462_b0110 article-title: Customizable three-dimensional-printed origami soft robotic joint with effective behavior shaping for safe interactions publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2018.2871440 – volume: 24 start-page: 2163 year: 2014 ident: 10.1016/j.cej.2024.151462_b0020 article-title: Pneumatic networks for soft robotics that actuate rapidly publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201303288 – year: 2016 ident: 10.1016/j.cej.2024.151462_b0170 – volume: 40 start-page: 449 year: 2021 ident: 10.1016/j.cej.2024.151462_b0240 article-title: A soft manipulator for efficient delicate grasping in shallow water: modeling, control, and real-world experiments publication-title: Int. J. Robot. Res. doi: 10.1177/0278364920917203 – volume: 8 year: 2021 ident: 10.1016/j.cej.2024.151462_b0190 article-title: A compact soft robotic wrist brace with origami actuators publication-title: Front. Robot. AI. doi: 10.3389/frobt.2021.614623 – volume: 5 start-page: 3003 year: 2020 ident: 10.1016/j.cej.2024.151462_b0135 article-title: A high-payload proprioceptive hybrid robotic gripper with soft origamic actuators publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2020.2974438 – ident: 10.1016/j.cej.2024.151462_b0220 – volume: 536 start-page: 451 year: 2016 ident: 10.1016/j.cej.2024.151462_b0050 article-title: An integrated design and fabrication strategy for entirely soft, autonomous robots publication-title: Nature doi: 10.1038/nature19100 – volume: 10 start-page: 1210217 year: 2023 ident: 10.1016/j.cej.2024.151462_b0195 article-title: Performance enhancement of the soft robotic segment for a trunk-like arm publication-title: Front. Robot. AI. doi: 10.3389/frobt.2023.1210217 – year: 2015 ident: 10.1016/j.cej.2024.151462_b0085 – volume: 37 start-page: 817 year: 2005 ident: 10.1016/j.cej.2024.151462_b0225 article-title: Stress–strain behavior of thermoplastic polyurethanes publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2004.08.001 – volume: 10 year: 2015 ident: 10.1016/j.cej.2024.151462_b0080 article-title: 3D printing antagonistic systems of artificial muscle using projection stereolithography publication-title: Bioinspir. Biomim. doi: 10.1088/1748-3190/10/5/055003 – volume: 7 year: 2022 ident: 10.1016/j.cej.2024.151462_b0150 article-title: 3D-printed biomimetic artificial muscles using soft actuators that contract and elongate publication-title: Sci. Robot. doi: 10.1126/scirobotics.abn4155 – volume: 26 start-page: 2747 year: 2020 ident: 10.1016/j.cej.2024.151462_b0045 article-title: Otariidae-inspired soft-robotic supernumerary flippers by fabric kirigami and origami publication-title: IEEE-ASME Trans. Mechatron. doi: 10.1109/TMECH.2020.3045476 – volume: 3 start-page: 144 year: 2016 ident: 10.1016/j.cej.2024.151462_b0160 article-title: High-force soft printable pneumatics for soft robotic applications publication-title: Soft Robot. doi: 10.1089/soro.2016.0030 – volume: 14 year: 2022 ident: 10.1016/j.cej.2024.151462_b0185 article-title: A six degrees-of-freedom soft robotic joint with tilt-arranged origami actuator publication-title: J. Mech. Robot. doi: 10.1115/1.4054731 – volume: 99 start-page: 130 year: 2015 ident: 10.1016/j.cej.2024.151462_b0095 article-title: Deformation of the Miura-ori patterned sheet publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2015.05.009 – volume: 14 start-page: 1607 year: 2023 ident: 10.1016/j.cej.2024.151462_b0155 article-title: Multimaterial 3D printed self-locking thick-panel origami metamaterials publication-title: Nat. Commun. doi: 10.1038/s41467-023-37343-w – volume: 50 start-page: 1890 year: 2011 ident: 10.1016/j.cej.2024.151462_b0015 article-title: Soft robotics for chemists publication-title: Angew. Chem. doi: 10.1002/anie.201006464 – volume: 14 start-page: 4329 year: 2023 ident: 10.1016/j.cej.2024.151462_b0120 article-title: Plug & play origami modules with all-purpose deformation modes publication-title: Nat. Commun. doi: 10.1038/s41467-023-39980-7 – volume: 22 start-page: 717 year: 2017 ident: 10.1016/j.cej.2024.151462_b0025 article-title: Interaction forces of soft fiber reinforced bending actuators publication-title: IEEE-ASME Trans. Mechatron. doi: 10.1109/TMECH.2016.2638468 – volume: 29 start-page: 1806698 year: 2019 ident: 10.1016/j.cej.2024.151462_b0255 article-title: Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201806698 – volume: 8 year: 2016 ident: 10.1016/j.cej.2024.151462_b0105 article-title: Deployable prismatic structures with rigid origami patterns publication-title: J. Mech. Robot. doi: 10.1115/1.4031953 – volume: 4 year: 2019 ident: 10.1016/j.cej.2024.151462_b0145 article-title: Bioinspired dual-morphing stretchable origami publication-title: Sci. Robot. doi: 10.1126/scirobotics.aay3493 – volume: 31 year: 2019 ident: 10.1016/j.cej.2024.151462_b0115 article-title: Architected origami materials: how folding creates sophisticated mechanical properties publication-title: Adv. Mater. – ident: 10.1016/j.cej.2024.151462_b0235 doi: 10.1115/DETC2013-12947 – volume: 114 start-page: 13132 year: 2017 ident: 10.1016/j.cej.2024.151462_b0140 article-title: Fluid-driven origami-inspired artificial muscles publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1713450114 – volume: 26 start-page: 1345 year: 2020 ident: 10.1016/j.cej.2024.151462_b0215 article-title: A review of 3D printing processes and materials for soft robotics publication-title: Rapid Prototyp. J. doi: 10.1108/RPJ-11-2019-0302 – volume: 521 start-page: 467 year: 2015 ident: 10.1016/j.cej.2024.151462_b0005 article-title: Design, fabrication and control of soft robots publication-title: Nature doi: 10.1038/nature14543 – volume: 1 start-page: 213 year: 2014 ident: 10.1016/j.cej.2024.151462_b0070 article-title: A resilient, untethered soft robot publication-title: Soft Robot. doi: 10.1089/soro.2014.0008 – year: 2024 ident: 10.1016/j.cej.2024.151462_b0125 article-title: Origami-patterned rigidification for soft robotic bifurcation publication-title: Adv. Intell. Syst. – volume: 3 start-page: 109 year: 2016 ident: 10.1016/j.cej.2024.151462_b0250 article-title: Design and analysis of a soft pneumatic actuator with origami shell reinforcement publication-title: Soft Robot. doi: 10.1089/soro.2016.0023 – volume: 108 start-page: 20400 year: 2011 ident: 10.1016/j.cej.2024.151462_b0040 article-title: Multigait soft robot publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1116564108 – ident: 10.1016/j.cej.2024.151462_b0205 – volume: 33 start-page: 2003387 year: 2021 ident: 10.1016/j.cej.2024.151462_b0060 article-title: 3D printing materials for soft robotics publication-title: Adv. Mater. doi: 10.1002/adma.202003387 – ident: 10.1016/j.cej.2024.151462_b0175 doi: 10.1109/CYBER46603.2019.9066517 – volume: 130 start-page: 109 year: 2018 ident: 10.1016/j.cej.2024.151462_b0035 article-title: Design and modeling of a soft robotic surface with hyperelastic material publication-title: Mech. Mach. Theory doi: 10.1016/j.mechmachtheory.2018.08.010 – volume: 22 start-page: 1376 year: 2012 ident: 10.1016/j.cej.2024.151462_b0090 article-title: Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102978 – volume: 591 start-page: 66 year: 2021 ident: 10.1016/j.cej.2024.151462_b0075 article-title: Self-powered soft robot in the Mariana Trench publication-title: Nature doi: 10.1038/s41586-020-03153-z – volume: 7 start-page: 235 year: 2022 ident: 10.1016/j.cej.2024.151462_b0010 article-title: Soft actuators for real-world applications publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00389-7 – volume: 4 start-page: 123 year: 2021 ident: 10.1016/j.cej.2024.151462_b0065 article-title: Fluid-driven artificial muscles: bio-design, manufacturing, sensing, control, and applications publication-title: Bio-Des. Manuf. doi: 10.1007/s42242-020-00099-z |
| SSID | ssj0006919 |
| Score | 2.4765413 |
| Snippet | [Display omitted]
•The approach of using semi-rigid elastomer to create soft actuator is proposed.•Small-strain folding (SSF) of the origami structure is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 151462 |
| SubjectTerms | Origami Semi-rigid elastomer SLS printing Small-strain folding Soft actuator |
| Title | Small-strain folding of semi-rigid elastomer derives high-performance 3D-printable soft origami actuators |
| URI | https://dx.doi.org/10.1016/j.cej.2024.151462 |
| Volume | 489 |
| WOSCitedRecordID | wos001234651500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1385-8947 databaseCode: AIEXJ dateStart: 19970115 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006919 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELbKLgc4IJ5ieckHTlSumth5-LhidwUIrZB2kcopchxHpGrSqkmWih_E72T8yIPCIvaAVFmV5TiP-TSeGY-_Qeg186JMsnxOMpGDgxKkkqQeNFSvdYzSMJPCFJuIzs_jxYJ_mkx-dGdhrlZRVcW7Hd_8V1FDHwhbH529gbj7SaED_oPQoQWxQ_tPgr8oxWpFalP7YZrbzSVtEtaqLIgug5VNFZjMzbo0xcG3hndWsxaTzegQAT0hOuTXmJNVNejqqS6hJcpCs2-02lOvx3ZtzzugBn7DnpVCVw0ROvvHRk8vvhXNd3vI2AUkeDgKSHwsWjMKIOpWVZN9YNXjmRj6TlpRla1Vml_FetgasOrri9gV45iGz4bcK6eGaRyQmFsuzk5PM1tryGlasFSY1eO_LQI2HrGcSbWc6dlnw9hfCbf3FsI-PbHLfFsmMEWip0jsFLfQoR8FHLTn4fH708WHfs0PuSkh0z93t39uMgn3nuPPFtDIqrm8j-45dwQfWxg9QBNVPUR3RySVj1AxBhR2gMLrHA-Awj2gsAMU3gcUHgMKa0BhByjcA-ox-nx2evn2HXEFOoj0edSQ0BM-E2kILoDyUyaEyOdShFE2j8Ig8APJUhqnoQRlQCM_1VSQIqZZzimYZjn36BN0UK0r9RRhT3gSTCP9U0xyL5bKDAr83Bfg9R6heffREunY6_V7r5JrhXWE3vSXbCx1y98Gs04SibM9rU2ZAKquv-zZTe7xHN0ZwP4CHTTbVr1Et-VVU9TbVw5SPwHTm6Wv |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Small-strain+folding+of+semi-rigid+elastomer+derives+high-performance+3D-printable+soft+origami+actuators&rft.jtitle=Chemical+engineering+journal+%28Lausanne%2C+Switzerland+%3A+1996%29&rft.au=Liu%2C+Sicong&rft.au=Chen%2C+Fang&rft.au=Duanmu%2C+Dehao&rft.au=Wang%2C+Yaxi&rft.date=2024-06-01&rft.issn=1385-8947&rft.volume=489&rft.spage=151462&rft_id=info:doi/10.1016%2Fj.cej.2024.151462&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cej_2024_151462 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1385-8947&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1385-8947&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1385-8947&client=summon |