Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data

Least squares is an important method for solving linear fitting problems and quadratic optimization problems. This paper explores the properties of the least squares methods and the multi-innovation least squares methods. It demonstrates lemmas and theorems about the least squares and multi-innovati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational and applied mathematics Jg. 426; S. 115107
1. Verfasser: Ding, Feng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2023
Schlagworte:
ISSN:0377-0427, 1879-1778
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Least squares is an important method for solving linear fitting problems and quadratic optimization problems. This paper explores the properties of the least squares methods and the multi-innovation least squares methods. It demonstrates lemmas and theorems about the least squares and multi-innovation least squares parameter estimation algorithms after reviewing and surveying some important contributions in the area of system identification, such as the auxiliary model identification idea, the multi-innovation identification theory, the hierarchical identification principle, the coupling identification concept and the filtering identification idea. The results of the least squares and multi-innovation least squares algorithms for linear regressive systems with white noises can be extended to other systems with colored noises.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2023.115107