Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data

Least squares is an important method for solving linear fitting problems and quadratic optimization problems. This paper explores the properties of the least squares methods and the multi-innovation least squares methods. It demonstrates lemmas and theorems about the least squares and multi-innovati...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 426; s. 115107
Hlavní autor: Ding, Feng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2023
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Least squares is an important method for solving linear fitting problems and quadratic optimization problems. This paper explores the properties of the least squares methods and the multi-innovation least squares methods. It demonstrates lemmas and theorems about the least squares and multi-innovation least squares parameter estimation algorithms after reviewing and surveying some important contributions in the area of system identification, such as the auxiliary model identification idea, the multi-innovation identification theory, the hierarchical identification principle, the coupling identification concept and the filtering identification idea. The results of the least squares and multi-innovation least squares algorithms for linear regressive systems with white noises can be extended to other systems with colored noises.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2023.115107