Online reinforcement learning multiplayer non-zero sum games of continuous-time Markov jump linear systems
•A novel online mode-free integral reinforcement learning algorithm is proposed to solve the mutiplayer non-zero sum games.•The online learning is used to compute the corresponding N coupled algebraic Riccati equations.•The policy iterative algorithm is applied to solve the coupled algebraic Riccati...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 412; s. 126537 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2022
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •A novel online mode-free integral reinforcement learning algorithm is proposed to solve the mutiplayer non-zero sum games.•The online learning is used to compute the corresponding N coupled algebraic Riccati equations.•The policy iterative algorithm is applied to solve the coupled algebraic Riccati equations corresponding to the multiplayer nonzero sum games.
In this paper, a novel online mode-free integral reinforcement learning algorithm is proposed to solve the multiplayer non-zero sum games. We first collect and learn the subsystems information of states and inputs; then we use the online learning to compute the corresponding N coupled algebraic Riccati equations. The policy iterative algorithm proposed in this paper can solve the coupled algebraic Riccati equations corresponding to the multiplayer non-zero sum games. Finally, the effectiveness and feasibility of the design method of this paper is proved by simulation example with three players. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2021.126537 |