A swarm anomaly detection model for IoT UAVs based on a multi-modal denoising autoencoder and federated learning
•A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder has been designed to achieve multi-source heterogeneous sensor noise removal.•An anomaly detection model for UAV swarms based on federated lear...
Saved in:
| Published in: | Computers & industrial engineering Vol. 196; p. 110454 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.10.2024
|
| Subjects: | |
| ISSN: | 0360-8352 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder has been designed to achieve multi-source heterogeneous sensor noise removal.•An anomaly detection model for UAV swarms based on federated learning mechanism is implemented.•Results on five datasets show that our model outperforms similar models in terms of accuracy.
The widespread application of unmanned aerial vehicle (UAV) swarms has posed unique challenges for anomaly detection. Multi-modal noise from multi-source heterogeneous sensors during UAV swarm communication affects data quality, and limited data sharing between different UAV organisations restricts training a unified anomaly detection model. To address these problems, this study proposes a UAV swarm anomaly detection model based on a multi-modal denoising autoencoder and federated learning (L-MDAE). First, L-MDAE simulates noise by adding perturbations to the original data during UAV swarm communication. Second, according to the characteristics of UAV data noise, this study designs a new MSE loss function (normalised mean square error, NMSE) based on the normalised correlation coefficient. Furthermore, heterogeneous neural networks with NMSE are constructed to enhance the multi-modal noise–removal capability of the model. Finally, this study considers the UAV control node as the client and the ground control station as the server. Using a federated learning mechanism, L-MDAE is trained on a client dataset, and its parameters are integrated and distributed on the server. In this way, each UAV can effectively detect abnormal data using L-MDAE. Experimental results on five datasets, including ALFA, TLM and ITS, demonstrate that L-MDAE outperforms baseline and related models. When using ALFA, L-MDAE achieved an accuracy of 0.9919 and a swarm anomaly detection accuracy of 0.9901, approximately 2% higher than that of the baseline model. |
|---|---|
| AbstractList | •A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder has been designed to achieve multi-source heterogeneous sensor noise removal.•An anomaly detection model for UAV swarms based on federated learning mechanism is implemented.•Results on five datasets show that our model outperforms similar models in terms of accuracy.
The widespread application of unmanned aerial vehicle (UAV) swarms has posed unique challenges for anomaly detection. Multi-modal noise from multi-source heterogeneous sensors during UAV swarm communication affects data quality, and limited data sharing between different UAV organisations restricts training a unified anomaly detection model. To address these problems, this study proposes a UAV swarm anomaly detection model based on a multi-modal denoising autoencoder and federated learning (L-MDAE). First, L-MDAE simulates noise by adding perturbations to the original data during UAV swarm communication. Second, according to the characteristics of UAV data noise, this study designs a new MSE loss function (normalised mean square error, NMSE) based on the normalised correlation coefficient. Furthermore, heterogeneous neural networks with NMSE are constructed to enhance the multi-modal noise–removal capability of the model. Finally, this study considers the UAV control node as the client and the ground control station as the server. Using a federated learning mechanism, L-MDAE is trained on a client dataset, and its parameters are integrated and distributed on the server. In this way, each UAV can effectively detect abnormal data using L-MDAE. Experimental results on five datasets, including ALFA, TLM and ITS, demonstrate that L-MDAE outperforms baseline and related models. When using ALFA, L-MDAE achieved an accuracy of 0.9919 and a swarm anomaly detection accuracy of 0.9901, approximately 2% higher than that of the baseline model. |
| ArticleNumber | 110454 |
| Author | Zhao, Chong Yang, Tao Lu, Yu Zeng, Rong Chen, Wen |
| Author_xml | – sequence: 1 givenname: Yu surname: Lu fullname: Lu, Yu email: luyu@stu.cwnu.edu.cn organization: School of Computer Science, China West Normal University, Nanchong, China – sequence: 2 givenname: Tao surname: Yang fullname: Yang, Tao email: yangt@cwnu.edu.cn organization: School of Computer Science, China West Normal University, Nanchong, China – sequence: 3 givenname: Chong surname: Zhao fullname: Zhao, Chong email: 79335604@qq.com organization: School of Computer Science, China West Normal University, Nanchong, China – sequence: 4 givenname: Wen surname: Chen fullname: Chen, Wen email: wenchen@scu.edu.cn organization: the School of Cyber Science and Engineering, Sichuan University, Chengdu, China – sequence: 5 givenname: Rong surname: Zeng fullname: Zeng, Rong email: 410012zr@cwnu.edu.cn organization: School of Electronic Information Engineering, China West Normal University, Nanchong, China |
| BookMark | eNp9kE1LAzEQhnOoYFv9Ad7yB3ZNst94KsWPQkGQ6jVkk1lJ2U1KEpX-e6fUk4eeZpj3fYaZd0Fmzjsg5I6znDNe3-9zbSEXTJQ556ysyhmZs6JmWVtU4posYtwzhvOOz8lhReOPChNVzk9qPFIDCXSy3tHJGxjp4APd-B19X31E2qsIhqKm6PQ1JpuhR43IOG-jdZ9UfSUPTiMZcKOhA2CnEkIjqODQckOuBjVGuP2rS_L29Lhbv2Tb1-fNerXNtOialJVCN6bGG_vGdLpRrO2E6IBXbVsrVpmGi170WsBQQdkrPhTasL40wqBcLElzXqqDjzHAILVN6vRVCsqOkjN5SkrucQ7ylJQ8J4Uk_0cegp1UOF5kHs4M4D_fFoKMaHEajA2YpTTeXqB_AdbUhlA |
| CitedBy_id | crossref_primary_10_1016_j_cie_2025_111084 crossref_primary_10_35234_fumbd_1668498 crossref_primary_10_1016_j_engappai_2025_111584 crossref_primary_10_1016_j_ins_2025_122211 crossref_primary_10_1016_j_aei_2025_103255 crossref_primary_10_1109_TII_2025_3567378 crossref_primary_10_48084_etasr_10336 crossref_primary_10_1016_j_aei_2025_103866 crossref_primary_10_1109_TIM_2025_3580857 crossref_primary_10_1016_j_eswa_2024_126233 |
| Cites_doi | 10.1109/COMST.2015.2402161 10.1007/s10845-020-01600-2 10.1016/j.compag.2021.106608 10.1016/j.cja.2014.12.003 10.1177/0278364920966642 10.1109/TII.2019.2943898 10.1145/1390156.1390294 10.1016/j.apacoust.2021.108325 10.1613/jair.953 10.1016/j.eswa.2023.122869 10.1109/TII.2020.3005965 10.1016/j.engappai.2024.107961 10.3390/electronics12153304 10.11003/JPNT.2015.4.2.057 10.1007/s10514-022-10066-5 10.2118/193211-MS 10.1109/ACCESS.2021.3137201 10.3390/app13074301 10.1109/JIOT.2022.3200121 10.1016/j.petrol.2021.109633 10.1016/j.aei.2024.102440 10.3850/978-981-14-8593-0_3924-cd 10.1109/MPRV.2018.03367731 10.1109/BDACS53596.2021.00025 10.1109/JIOT.2023.3292308 10.1007/s11431-022-2312-8 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2024.110454 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cie_2024_110454 S0360835224005758 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXKI AAXUO ABAOU ABMAC ABUCO ABXDB ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AATTM AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c297t-42c7d6459b7d9c7a089229e15886a05d712b2bc2ef5e4ba1f3cd0b4d2d6a03 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001296235700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Tue Nov 18 22:25:02 EST 2025 Sat Nov 29 04:15:56 EST 2025 Sat Sep 14 18:01:42 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Denoising autoencoder Federated learning UAV swarm Intrusion detection |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-42c7d6459b7d9c7a089229e15886a05d712b2bc2ef5e4ba1f3cd0b4d2d6a03 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2024_110454 crossref_primary_10_1016_j_cie_2024_110454 elsevier_sciencedirect_doi_10_1016_j_cie_2024_110454 |
| PublicationCentury | 2000 |
| PublicationDate | October 2024 2024-10-00 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: October 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | South China Morning Post. HK$1 million in damage caused by GPS jamming that caused 46 UAVs to plummet during Hong Kong show. 2018, URL https://www.scmp.com/news/hong-kong/law-and-crime/article/2170669/hk13-million-damage-caused-gps-jamming-caused-46-UAVs. Altinors, Yol, Yaman (b0030) 2021; 183 Singapore. Dudley (b0080) 2014 Air Accidents Investigation Branch reports, “AAIB investigation to DJI M600 Pro (UAS, registration n/a) 131219”, Website 06 2020. [Online], Available: https://www.gov.uk/aaib-reports/aaib-investigation-to-dji-m600-pro-uas-registration-n-a-131219. Asadzadeh, de Oliveira, de Souza Filho (b0035) 2022; 208 Subbarayalu, Vensuslaus (b0155) 2023; 7 Alos, Dahrouj, Dakkak (b0025) 2020; 9 OnePetro. Bell, V., Rengasamy, D., Rothwell, B., et al. (2022). Anomaly detection for unmanned aerial vehicle sensor data using a stacked recurrent autoencoder method with dynamic thresholding[J]. arXiv preprint arXiv:2203.04734. Hassler, Mughal, Ismail (b0085) 2023 Ahn, Chung (b0005) 2024; 244 Seo, Lee, Im, Jee (b0140) 2015; 06 Motlagh, Kortoçi, Su (b0130) 2023 Kolias, Kambourakis, Stavrou (b0115) 2015; 18 Bronz, Baskaya, Delahaye (b0045) 2020 He, Chen, Tang (b0095) 2022; 10 Vincent, P., Larochelle, H., Bengio, Y., et al. (2008). Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning, pp. 1096–1103. Al Amir, N., Marar, A., & Saeed, M. (2018) Eye in the sky: how the rise of UAVs will transfrom the oil & gas industry. In Meidan, Bohadana, Mathov (b0125) 2018; 17 Zhao, Zhong, Fu (b0195) 2019; 16 Deng, Lu, Yang (b0075) 2024; 132 Yang, Li, Li (b0170) 2023; 66 Shao, Xia, Han (b0145) 2020; 17 Chawla, Bowyer, Hall (b0055) 2002; 16 Zeeshan, Riaz, Bilal (b0190) 2021; 10 Wang, Wang, Wang (b0165) 2015; 28 Horyna, Baca, Walter (b0100) 2023; 47 Yang, Li, Zhu (b0175) 2024; 60 Chen, J., Yang, T., He, B., et al. (2021). An analysis and research on wireless network security dataset[C]//2021 International Conference on Big Data Analysis and Computer Science (BDACS). IEEE, pp. 80–83. Chen, Wang, Yang (b0065) 2023; 12 Keipour, Mousaei, Scherer (b0110) 2021; 40 Yang, Lu, Deng (b0180) 2023; 13 Albiero, Garcia, Umezu (b0020) 2022; 193 Brundage, M., Avin, S., Clark, J., et al. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation[J]. arXiv preprint arXiv:1802.07228. Hayawi, Anwar, Malik (b0090) 2023 Krishna, Murphy (b0120) 2017 Johnsen, S. O., Bakken, T., Transeth, A. A., Holmstrøm, S., Merz, M., Grøtli, E. I., & Storvold, R. (2020). Safety and security of UAVs in the oil and gas industry. In 《Replicating peregrine attack strategies could help down rogue UAVs》https://www.ox.ac.uk/news/2017-12-04-replicating-peregrine-attack-strategies-could-help-down-rogue-UAVs. Yang, Shami, Stevens (b0185) 2022 Chen, Zhang, Gao (b0070) 2021; 32 10.1016/j.cie.2024.110454_b0160 10.1016/j.cie.2024.110454_b0040 Yang (10.1016/j.cie.2024.110454_b0185) 2022 Horyna (10.1016/j.cie.2024.110454_b0100) 2023; 47 Zhao (10.1016/j.cie.2024.110454_b0195) 2019; 16 Dudley (10.1016/j.cie.2024.110454_b0080) 2014 Alos (10.1016/j.cie.2024.110454_b0025) 2020; 9 10.1016/j.cie.2024.110454_b0105 Shao (10.1016/j.cie.2024.110454_b0145) 2020; 17 Albiero (10.1016/j.cie.2024.110454_b0020) 2022; 193 Asadzadeh (10.1016/j.cie.2024.110454_b0035) 2022; 208 Kolias (10.1016/j.cie.2024.110454_b0115) 2015; 18 10.1016/j.cie.2024.110454_b0050 Zeeshan (10.1016/j.cie.2024.110454_b0190) 2021; 10 10.1016/j.cie.2024.110454_b0150 Yang (10.1016/j.cie.2024.110454_b0170) 2023; 66 Chen (10.1016/j.cie.2024.110454_b0065) 2023; 12 Krishna (10.1016/j.cie.2024.110454_b0120) 2017 10.1016/j.cie.2024.110454_b0010 Chawla (10.1016/j.cie.2024.110454_b0055) 2002; 16 Meidan (10.1016/j.cie.2024.110454_b0125) 2018; 17 Subbarayalu (10.1016/j.cie.2024.110454_b0155) 2023; 7 Chen (10.1016/j.cie.2024.110454_b0070) 2021; 32 Yang (10.1016/j.cie.2024.110454_b0175) 2024; 60 10.1016/j.cie.2024.110454_b0135 10.1016/j.cie.2024.110454_b0015 Hayawi (10.1016/j.cie.2024.110454_b0090) 2023 Motlagh (10.1016/j.cie.2024.110454_b0130) 2023 Yang (10.1016/j.cie.2024.110454_b0180) 2023; 13 Altinors (10.1016/j.cie.2024.110454_b0030) 2021; 183 Deng (10.1016/j.cie.2024.110454_b0075) 2024; 132 Keipour (10.1016/j.cie.2024.110454_b0110) 2021; 40 He (10.1016/j.cie.2024.110454_b0095) 2022; 10 Wang (10.1016/j.cie.2024.110454_b0165) 2015; 28 Hassler (10.1016/j.cie.2024.110454_b0085) 2023 Bronz (10.1016/j.cie.2024.110454_b0045) 2020 Ahn (10.1016/j.cie.2024.110454_b0005) 2024; 244 10.1016/j.cie.2024.110454_b0060 Seo (10.1016/j.cie.2024.110454_b0140) 2015; 06 |
| References_xml | – volume: 183 year: 2021 ident: b0030 article-title: A sound based method for fault detection with statistical feature extraction in UAV motors[J] publication-title: Applied Acoustics – volume: 12 start-page: 3304 year: 2023 ident: b0065 article-title: An enhancement method in few-shot scenarios for intrusion detection in smart home environments[J] publication-title: Electronics – start-page: 194 year: 2017 end-page: 199 ident: b0120 article-title: A review on cybersecurity vulnerabilities for unmanned aerial vehicles publication-title: 2017 IEEE international symposium on safety, security and rescue robotics (SSRR) – volume: 40 start-page: 515 year: 2021 end-page: 520 ident: b0110 article-title: Alfa: A dataset for uav fault and anomaly detection[J] publication-title: The International Journal of Robotics Research – volume: 06 start-page: 57 year: 2015 end-page: 65 ident: b0140 article-title: Effect of spoofing on unmanned aerial vehicle using counterfeited gps signal publication-title: Journal of Positioning Navigation and Timing – volume: 10 start-page: 2269 year: 2021 end-page: 2283 ident: b0190 article-title: Protocol-based deep intrusion detection for dos and ddos attacks using unsw-nb15 and bot-iot data-sets[J] publication-title: IEEE Access – start-page: 1 year: 2020: end-page: 10 ident: b0045 article-title: Real-time fault detection on small fixed-wing UAVs using machine learning[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC) publication-title: IEEE – year: 2023 ident: b0090 article-title: Airborne computing: A toolkit for UAV-assisted federated computing for sustainable smart cities[J] publication-title: IEEE Internet of Things Journal – volume: 17 start-page: 12 year: 2018 end-page: 22 ident: b0125 article-title: N-baiot—network-based detection of IoT botnet attacks using deep autoencoders[J] publication-title: IEEE Pervasive Computing – volume: 32 start-page: 971 year: 2021 end-page: 987 ident: b0070 article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model[J] publication-title: Journal of Intelligent Manufacturing – volume: 18 start-page: 184 year: 2015 end-page: 208 ident: b0115 article-title: Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset[J] publication-title: IEEE Communications Surveys & Tutorials – volume: 17 start-page: 3488 year: 2020 end-page: 3496 ident: b0145 article-title: Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images[J] publication-title: IEEE Transactions on Industrial Informatics – volume: 28 start-page: 206 year: 2015 end-page: 213 ident: b0165 article-title: A data driven approach for detection and isolation of anomalies in a group of UAVs[J] publication-title: Chinese Journal of Aeronautics – volume: 132 year: 2024 ident: b0075 article-title: Unmanned Aerial Vehicles anomaly detection model based on sensor information fusion and hybrid multimodal neural network[J] publication-title: Engineering Applications of Artificial Intelligence – reference: Al Amir, N., Marar, A., & Saeed, M. (2018) Eye in the sky: how the rise of UAVs will transfrom the oil & gas industry. In: – reference: . OnePetro. – volume: 60 year: 2024 ident: b0175 article-title: Spatio-temporal correlation-based multiple regression for anomaly detection and recovery of unmanned aerial vehicle flight data[J] publication-title: Advanced Engineering Informatics – reference: 《Replicating peregrine attack strategies could help down rogue UAVs》https://www.ox.ac.uk/news/2017-12-04-replicating-peregrine-attack-strategies-could-help-down-rogue-UAVs. – reference: Vincent, P., Larochelle, H., Bengio, Y., et al. (2008). Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th international conference on Machine learning, pp. 1096–1103. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b0055 article-title: SMOTE: Synthetic minority over-sampling technique[J] publication-title: Journal of artificial Intelligence Research – volume: 7 start-page: 248 year: 2023 ident: b0155 article-title: An intrusion detection system for UAV swarming utilizing timed probabilistic automata[J] publication-title: UAVs – volume: 13 start-page: 4301 year: 2023 ident: b0180 article-title: Acquisition and processing of UAV fault data based on time line modeling method[J] publication-title: Applied Sciences – reference: South China Morning Post. HK$1 million in damage caused by GPS jamming that caused 46 UAVs to plummet during Hong Kong show. 2018, URL https://www.scmp.com/news/hong-kong/law-and-crime/article/2170669/hk13-million-damage-caused-gps-jamming-caused-46-UAVs. – volume: 208 year: 2022 ident: b0035 article-title: UAV-based remote sensing for the petroleum industry and environ-mental monitoring: State-of-the-art and perspectives publication-title: Journal of Petroleum Science and Engineering – reference: , Singapore. – volume: 244 year: 2024 ident: b0005 article-title: Deep learning-based anomaly detection for individual UAV vehicles performing swarm missions[J] publication-title: Expert Systems with Applications – volume: 66 start-page: 1304 year: 2023 end-page: 1316 ident: b0170 article-title: Data-driven unsupervised anomaly detection and recovery of unmanned aerial vehicle flight data based on spatiotemporal correlation[J] publication-title: Science China Technological Sciences – start-page: 3545 year: 2022: end-page: 3550 ident: b0185 article-title: LCCDE: A decision-based ensemble framework for intrusion detection in the internet of vehicles[C]//GLOBECOM 2022–2022 publication-title: IEEE Global Communications Conference. IEEE – volume: 16 start-page: 4681 year: 2019 end-page: 4690 ident: b0195 article-title: Deep residual shrinkage networks for fault diagnosis[J] publication-title: IEEE Transactions on Industrial Informatics – volume: 9 start-page: 721 year: 2020 end-page: 726 ident: b0025 article-title: A novel technique to assess UAV behavior using PCA-based anomaly detection algorithm[J] publication-title: International Journal of Mechanical Engineering and Robotics Research – volume: 10 start-page: 120 year: 2022 end-page: 132 ident: b0095 article-title: Cgan-based collaborative intrusion detection for uav networks: A blockchain-empowered distributed federated learning approach[J] publication-title: IEEE Internet of Things Journal – reference: Bell, V., Rengasamy, D., Rothwell, B., et al. (2022). Anomaly detection for unmanned aerial vehicle sensor data using a stacked recurrent autoencoder method with dynamic thresholding[J]. arXiv preprint arXiv:2203.04734. – reference: Johnsen, S. O., Bakken, T., Transeth, A. A., Holmstrøm, S., Merz, M., Grøtli, E. I., & Storvold, R. (2020). Safety and security of UAVs in the oil and gas industry. In – volume: 47 start-page: 77 year: 2023 end-page: 93 ident: b0100 article-title: Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication[J] publication-title: Autonomous Robots – year: 2023 ident: b0130 article-title: Unmanned aerial vehicles for air pollution monitoring: A survey[J] publication-title: IEEE Internet of Things Journal – reference: Chen, J., Yang, T., He, B., et al. (2021). An analysis and research on wireless network security dataset[C]//2021 International Conference on Big Data Analysis and Computer Science (BDACS). IEEE, pp. 80–83. – year: 2014 ident: b0080 article-title: Uniform central limit theorems[M] – reference: Brundage, M., Avin, S., Clark, J., et al. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation[J]. arXiv preprint arXiv:1802.07228. – volume: 193 year: 2022 ident: b0020 article-title: Swarm robots in mechanized agricultural operations: A review about challenges for research[J] publication-title: Computers and Electronics in Agriculture – year: 2023 ident: b0085 article-title: Cyber-physical intrusion detection system for unmanned aerial vehicles[J] publication-title: IEEE Transactions on Intelligent Transportation Systems – reference: Air Accidents Investigation Branch reports, “AAIB investigation to DJI M600 Pro (UAS, registration n/a) 131219”, Website 06 2020. [Online], Available: https://www.gov.uk/aaib-reports/aaib-investigation-to-dji-m600-pro-uas-registration-n-a-131219. – volume: 18 start-page: 184 issue: 1 year: 2015 ident: 10.1016/j.cie.2024.110454_b0115 article-title: Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset[J] publication-title: IEEE Communications Surveys & Tutorials doi: 10.1109/COMST.2015.2402161 – volume: 32 start-page: 971 issue: 4 year: 2021 ident: 10.1016/j.cie.2024.110454_b0070 article-title: Bearing fault diagnosis base on multi-scale CNN and LSTM model[J] publication-title: Journal of Intelligent Manufacturing doi: 10.1007/s10845-020-01600-2 – volume: 193 year: 2022 ident: 10.1016/j.cie.2024.110454_b0020 article-title: Swarm robots in mechanized agricultural operations: A review about challenges for research[J] publication-title: Computers and Electronics in Agriculture doi: 10.1016/j.compag.2021.106608 – ident: 10.1016/j.cie.2024.110454_b0040 – ident: 10.1016/j.cie.2024.110454_b0135 – volume: 28 start-page: 206 issue: 1 year: 2015 ident: 10.1016/j.cie.2024.110454_b0165 article-title: A data driven approach for detection and isolation of anomalies in a group of UAVs[J] publication-title: Chinese Journal of Aeronautics doi: 10.1016/j.cja.2014.12.003 – start-page: 3545 year: 2022 ident: 10.1016/j.cie.2024.110454_b0185 article-title: LCCDE: A decision-based ensemble framework for intrusion detection in the internet of vehicles[C]//GLOBECOM 2022–2022 publication-title: IEEE Global Communications Conference. IEEE – start-page: 1 year: 2020 ident: 10.1016/j.cie.2024.110454_b0045 article-title: Real-time fault detection on small fixed-wing UAVs using machine learning[C]//2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC) publication-title: IEEE – volume: 40 start-page: 515 issue: 2–3 year: 2021 ident: 10.1016/j.cie.2024.110454_b0110 article-title: Alfa: A dataset for uav fault and anomaly detection[J] publication-title: The International Journal of Robotics Research doi: 10.1177/0278364920966642 – volume: 16 start-page: 4681 issue: 7 year: 2019 ident: 10.1016/j.cie.2024.110454_b0195 article-title: Deep residual shrinkage networks for fault diagnosis[J] publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2019.2943898 – ident: 10.1016/j.cie.2024.110454_b0160 doi: 10.1145/1390156.1390294 – ident: 10.1016/j.cie.2024.110454_b0150 – volume: 7 start-page: 248 issue: 4 year: 2023 ident: 10.1016/j.cie.2024.110454_b0155 article-title: An intrusion detection system for UAV swarming utilizing timed probabilistic automata[J] publication-title: UAVs – volume: 183 year: 2021 ident: 10.1016/j.cie.2024.110454_b0030 article-title: A sound based method for fault detection with statistical feature extraction in UAV motors[J] publication-title: Applied Acoustics doi: 10.1016/j.apacoust.2021.108325 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.cie.2024.110454_b0055 article-title: SMOTE: Synthetic minority over-sampling technique[J] publication-title: Journal of artificial Intelligence Research doi: 10.1613/jair.953 – volume: 244 year: 2024 ident: 10.1016/j.cie.2024.110454_b0005 article-title: Deep learning-based anomaly detection for individual UAV vehicles performing swarm missions[J] publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122869 – volume: 17 start-page: 3488 issue: 5 year: 2020 ident: 10.1016/j.cie.2024.110454_b0145 article-title: Intelligent fault diagnosis of rotor-bearing system under varying working conditions with modified transfer convolutional neural network and thermal images[J] publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2020.3005965 – ident: 10.1016/j.cie.2024.110454_b0010 – volume: 132 year: 2024 ident: 10.1016/j.cie.2024.110454_b0075 article-title: Unmanned Aerial Vehicles anomaly detection model based on sensor information fusion and hybrid multimodal neural network[J] publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2024.107961 – volume: 12 start-page: 3304 issue: 15 year: 2023 ident: 10.1016/j.cie.2024.110454_b0065 article-title: An enhancement method in few-shot scenarios for intrusion detection in smart home environments[J] publication-title: Electronics doi: 10.3390/electronics12153304 – volume: 06 start-page: 57 year: 2015 ident: 10.1016/j.cie.2024.110454_b0140 article-title: Effect of spoofing on unmanned aerial vehicle using counterfeited gps signal publication-title: Journal of Positioning Navigation and Timing doi: 10.11003/JPNT.2015.4.2.057 – volume: 47 start-page: 77 issue: 1 year: 2023 ident: 10.1016/j.cie.2024.110454_b0100 article-title: Decentralized swarms of unmanned aerial vehicles for search and rescue operations without explicit communication[J] publication-title: Autonomous Robots doi: 10.1007/s10514-022-10066-5 – ident: 10.1016/j.cie.2024.110454_b0015 doi: 10.2118/193211-MS – volume: 10 start-page: 2269 year: 2021 ident: 10.1016/j.cie.2024.110454_b0190 article-title: Protocol-based deep intrusion detection for dos and ddos attacks using unsw-nb15 and bot-iot data-sets[J] publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3137201 – volume: 13 start-page: 4301 issue: 7 year: 2023 ident: 10.1016/j.cie.2024.110454_b0180 article-title: Acquisition and processing of UAV fault data based on time line modeling method[J] publication-title: Applied Sciences doi: 10.3390/app13074301 – volume: 10 start-page: 120 issue: 1 year: 2022 ident: 10.1016/j.cie.2024.110454_b0095 article-title: Cgan-based collaborative intrusion detection for uav networks: A blockchain-empowered distributed federated learning approach[J] publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2022.3200121 – volume: 9 start-page: 721 year: 2020 ident: 10.1016/j.cie.2024.110454_b0025 article-title: A novel technique to assess UAV behavior using PCA-based anomaly detection algorithm[J] publication-title: International Journal of Mechanical Engineering and Robotics Research – volume: 208 year: 2022 ident: 10.1016/j.cie.2024.110454_b0035 article-title: UAV-based remote sensing for the petroleum industry and environ-mental monitoring: State-of-the-art and perspectives publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2021.109633 – year: 2023 ident: 10.1016/j.cie.2024.110454_b0085 article-title: Cyber-physical intrusion detection system for unmanned aerial vehicles[J] publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 60 year: 2024 ident: 10.1016/j.cie.2024.110454_b0175 article-title: Spatio-temporal correlation-based multiple regression for anomaly detection and recovery of unmanned aerial vehicle flight data[J] publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2024.102440 – ident: 10.1016/j.cie.2024.110454_b0105 doi: 10.3850/978-981-14-8593-0_3924-cd – volume: 17 start-page: 12 issue: 3 year: 2018 ident: 10.1016/j.cie.2024.110454_b0125 article-title: N-baiot—network-based detection of IoT botnet attacks using deep autoencoders[J] publication-title: IEEE Pervasive Computing doi: 10.1109/MPRV.2018.03367731 – ident: 10.1016/j.cie.2024.110454_b0050 – year: 2014 ident: 10.1016/j.cie.2024.110454_b0080 – start-page: 194 year: 2017 ident: 10.1016/j.cie.2024.110454_b0120 article-title: A review on cybersecurity vulnerabilities for unmanned aerial vehicles – year: 2023 ident: 10.1016/j.cie.2024.110454_b0130 article-title: Unmanned aerial vehicles for air pollution monitoring: A survey[J] publication-title: IEEE Internet of Things Journal – ident: 10.1016/j.cie.2024.110454_b0060 doi: 10.1109/BDACS53596.2021.00025 – year: 2023 ident: 10.1016/j.cie.2024.110454_b0090 article-title: Airborne computing: A toolkit for UAV-assisted federated computing for sustainable smart cities[J] publication-title: IEEE Internet of Things Journal doi: 10.1109/JIOT.2023.3292308 – volume: 66 start-page: 1304 issue: 5 year: 2023 ident: 10.1016/j.cie.2024.110454_b0170 article-title: Data-driven unsupervised anomaly detection and recovery of unmanned aerial vehicle flight data based on spatiotemporal correlation[J] publication-title: Science China Technological Sciences doi: 10.1007/s11431-022-2312-8 |
| SSID | ssj0004591 |
| Score | 2.4842064 |
| Snippet | •A loss function called NMSE was designed to fit the difference between clean and noisy UAV Intrusion Traffic/fault data.•A multimodal denoising autoencoder... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110454 |
| SubjectTerms | Denoising autoencoder Federated learning Intrusion detection UAV swarm |
| Title | A swarm anomaly detection model for IoT UAVs based on a multi-modal denoising autoencoder and federated learning |
| URI | https://dx.doi.org/10.1016/j.cie.2024.110454 |
| Volume | 196 |
| WOSCitedRecordID | wos001296235700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004591 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZgywEOPAqIAkU-cGKVKut1NvYxqoraHioEC-wt8it0q5KsNtm2_Hs8tvNoeQiQuESrJHYiz6fZyXjm-xB6rZNY8rhg0XSqaUSLQlg_qHkkNC2ohAAilk5sIj05YYsFfxdKgmonJ5CWJbu64qv_amp7zhobWmf_wtzdpPaE_W2Nbo_W7Pb4R4bPxvWlWIPyRfVVnH8ba9MYrwfuVG9cXeFRNR9_zD7VY_gT07BhIHxpYWTvgW0bU1ZLl0UQm6YCrkugnIAcewHkEwLC1KA38WUY3rYaEbVD1LKXBTE97WFXArRx7n_T-Z2QuZ6LapDN9pnc06oftx_6ST6HJraQsiC0K34LebS2l6YvXPL9W3EE8eA13-zlbn_w8z7lcLZn_d8ePAG6Gahno75Bn_0B5nVhJoXG24TdRlskTTgboa3s6GBxPOCW9_qK7Xu0e-CuGvDGg34exQwik_lDdD98UuDMQ-ERumXKbfQgfF7g4LzrbXRvwD35GK0y7HCCA05whxPscIItTrDFCQacYIcTbK8JPMAJ7nCCBzixM2rc4QS3OHmC3r89mO8fRkF-I1KEp01EiUo1cA3JVHOViphxQriZJIzNRJzodEIkkYqYIjFUikkxVTqWVBNtL0-folFZleYZwoWeGema9OWMKqmkMEYVisGe-YRruoPidi1zFYjpQR_lPG8rEM_seZPD8ud--XfQm27IyrOy_O5m2hooD2GlDxdzi6ZfD3v-b8NeoLs95F-iUbPemF10R100y3r9KmDuOxl8nS8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+swarm+anomaly+detection+model+for+IoT+UAVs+based+on+a+multi-modal+denoising+autoencoder+and+federated+learning&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Lu%2C+Yu&rft.au=Yang%2C+Tao&rft.au=Zhao%2C+Chong&rft.au=Chen%2C+Wen&rft.date=2024-10-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.volume=196&rft_id=info:doi/10.1016%2Fj.cie.2024.110454&rft.externalDocID=S0360835224005758 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |