Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates
Numerical modeling of partial integrodifferential equations of fractional order shows interesting properties in various aspects of science, which means increased attention to fractional calculus. This paper is concerned with a feasible and accurate technique for obtaining numerical solutions for a c...
Uloženo v:
| Vydáno v: | Applied mathematics and computation Ročník 342; s. 280 - 294 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.02.2019
|
| Témata: | |
| ISSN: | 0096-3003, 1873-5649 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Numerical modeling of partial integrodifferential equations of fractional order shows interesting properties in various aspects of science, which means increased attention to fractional calculus. This paper is concerned with a feasible and accurate technique for obtaining numerical solutions for a class of partial integrodifferential equations of fractional order in Hilbert space within appropriate kernel functions. The algorithm relies on the reproducing kernel Hilbert space method that provides the solutions in rapidly convergent series representations for the reproducing kernel based upon the Fourier coefficients of orthogonalization process. The Caputo fractional derivatives are introduced to address these issues. Moreover, the error estimate of the generated solutions is established as well as the convergence of the iterative method is investigated under some theoretical assumptions. The superiority and applicability of the present technique is illustrated by handling linear and nonlinear numerical examples. The outcomes obtained are compared with exact solutions and existing methods to confirm the effectiveness of the reproducing kernel method. |
|---|---|
| ISSN: | 0096-3003 1873-5649 |
| DOI: | 10.1016/j.amc.2018.09.020 |