A novel fault diagnosis method based on nonlinear-CWT and improved YOLOv8 for axial piston pump using output pressure signal

Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Output pressure signals are commonly used for fault diagnosis due to their sensitivity to pump health condit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Advanced engineering informatics Ročník 64; s. 103041
Hlavní autoři: Xia, Shiqi, Huang, Weidi, Zhang, Jie
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.03.2025
Témata:
ISSN:1474-0346
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Output pressure signals are commonly used for fault diagnosis due to their sensitivity to pump health conditions. However, these signals are non-stationary, containing transient and pulse components, making traditional time and frequency analysis methods insufficient for accurate fault diagnosis. To address this, a novel fault diagnosis method is proposed. First, a Nonlinear Continuous Wavelet Transform (Nonlinear-CWT) is developed to transforms one-dimensional output pressure signals into two-dimensional time–frequency images, amplifying key signal characteristics and reducing noise. Then, a Horizontal Deformable Convolutional Network (HDCN) is proposed to handle horizontal deformations in the images caused by varying sampling lengths, replacing standard convolution modules in the YOLO (You Only Look Once) model. Lastly, Bayesian Optimization (BO) is employed to automatically optimize the hyperparameters, thereby producing a BHDCN-YOLO model. The experimental data of six health conditions with pump output pressure of 21 MPa is collected. Model performances are analyzed through the ablation experiments, comparison of other five deep learning model, and dataset with signal-to-noise ratios (SNR) of 30–50 dB. The results show that the BHDCN-YOLO model achieves an average accuracy of 97.38 % and inference speed of 0.9 ms. BHDCN-YOLO model accuracy improved by 20.2 % compared to the YOLO model. The adaptability experiment verified that HDCN-YOLO also has good recognition accuracy on datasets with additional sampling lengths. This study provides a novel method for more accurately diagnosing faults in axial piston pumps.
AbstractList Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability of the entire hydraulic system. Output pressure signals are commonly used for fault diagnosis due to their sensitivity to pump health conditions. However, these signals are non-stationary, containing transient and pulse components, making traditional time and frequency analysis methods insufficient for accurate fault diagnosis. To address this, a novel fault diagnosis method is proposed. First, a Nonlinear Continuous Wavelet Transform (Nonlinear-CWT) is developed to transforms one-dimensional output pressure signals into two-dimensional time–frequency images, amplifying key signal characteristics and reducing noise. Then, a Horizontal Deformable Convolutional Network (HDCN) is proposed to handle horizontal deformations in the images caused by varying sampling lengths, replacing standard convolution modules in the YOLO (You Only Look Once) model. Lastly, Bayesian Optimization (BO) is employed to automatically optimize the hyperparameters, thereby producing a BHDCN-YOLO model. The experimental data of six health conditions with pump output pressure of 21 MPa is collected. Model performances are analyzed through the ablation experiments, comparison of other five deep learning model, and dataset with signal-to-noise ratios (SNR) of 30–50 dB. The results show that the BHDCN-YOLO model achieves an average accuracy of 97.38 % and inference speed of 0.9 ms. BHDCN-YOLO model accuracy improved by 20.2 % compared to the YOLO model. The adaptability experiment verified that HDCN-YOLO also has good recognition accuracy on datasets with additional sampling lengths. This study provides a novel method for more accurately diagnosing faults in axial piston pumps.
ArticleNumber 103041
Author Huang, Weidi
Xia, Shiqi
Zhang, Jie
Author_xml – sequence: 1
  givenname: Shiqi
  surname: Xia
  fullname: Xia, Shiqi
  organization: College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
– sequence: 2
  givenname: Weidi
  surname: Huang
  fullname: Huang, Weidi
  organization: College of Mechanical Engineering, Zhejiang University, Hangzhou 310014, China
– sequence: 3
  givenname: Jie
  surname: Zhang
  fullname: Zhang, Jie
  email: zhangjie77@csu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
BookMark eNp90L9qwzAQBnANKTRJ-wDd9AJOJVuJbTqF0H8QyJJSOglZOqcXHMlIcmihD1-FdOqQ6Tj4fgf3TcjIOguE3HE244wv7vczBTjLWS7SXjDBR2TMRSkyVojFNZmEsGcpV9XlmPwsqXVH6Girhi5Sg2pnXcBADxA_naGNCmCosyllO7SgfLZ631JlDcVD7xM19GOz3hwr2jpP1ReqjvYYYiL9cOjpENDuqBtiP0Taewhh8EAD7qzqbshVq7oAt39zSt6eHrerl2y9eX5dLdeZzusyZoI3FRghoDasqhpdQ8NFPTesBa2FynPDGyhgobiBqil4xXlZQNGUjHNg83kxJfx8V3sXgodW9h4Pyn9LzuSpMrmXqTJ5qkyeK0um_Gc0RhXR2egVdhflw1lCeumI4GXQCFaDQQ86SuPwgv4Fak6MDA
CitedBy_id crossref_primary_10_1016_j_measurement_2025_118441
crossref_primary_10_1109_TIM_2025_3556190
crossref_primary_10_1016_j_measurement_2025_117892
crossref_primary_10_1016_j_eswa_2025_126452
crossref_primary_10_1063_5_0279740
Cites_doi 10.1016/j.neucom.2020.02.042
10.1016/j.ymssp.2012.10.020
10.1016/j.asoc.2023.110911
10.3390/s20247152
10.1016/j.aei.2022.101554
10.1016/j.ymssp.2018.04.038
10.1016/j.apacoust.2021.108336
10.1016/j.ast.2017.03.039
10.1007/s11465-022-0692-4
10.1016/j.apacoust.2020.107323
10.1016/j.apacoust.2020.107634
10.3390/s20226576
10.1016/j.compag.2023.108475
10.1016/j.cie.2023.109795
10.1007/s40857-021-00222-9
10.3390/jmse11030594
10.1007/s11431-021-1904-7
10.1109/CVPR.2019.00953
10.1016/j.ins.2024.120608
10.1088/1361-6501/ab8c11
10.1016/j.energy.2024.130882
10.3390/jmse11081609
10.1109/JSEN.2023.3263924
10.1007/s11465-018-0472-3
10.1016/j.isatra.2020.12.054
10.1016/j.isatra.2022.01.013
10.3390/s23052542
10.1016/j.apacoust.2022.108718
10.1109/TIM.2023.3264045
10.1016/j.aei.2021.101406
10.1016/j.engappai.2023.106139
10.1145/2818302
10.1016/j.measurement.2022.111582
10.1038/s41598-022-26316-6
10.1016/j.jestch.2023.101498
10.1016/j.engfailanal.2022.106300
10.1016/j.ymssp.2021.108752
10.1016/j.cja.2015.12.020
10.1016/j.asoc.2023.110682
10.1016/j.ress.2022.108560
10.1007/s10489-022-03344-3
10.1088/1361-6501/ab8d5a
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.aei.2024.103041
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
ExternalDocumentID 10_1016_j_aei_2024_103041
S147403462400692X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SST
SSV
SSZ
T5K
UHS
XPP
ZMT
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c297t-41b8ed44e9d088bc9eb1495d0fecc4a22d1be3e6a1de8b3181173e3b7011e0553
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001379436500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1474-0346
IngestDate Sat Nov 29 08:14:28 EST 2025
Tue Nov 18 22:35:04 EST 2025
Sat Mar 08 15:42:31 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Deep learning
Bayesian algorithm
Horizontal deformable convolutional networks
Continuous wavelet transform
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-41b8ed44e9d088bc9eb1495d0fecc4a22d1be3e6a1de8b3181173e3b7011e0553
ParticipantIDs crossref_primary_10_1016_j_aei_2024_103041
crossref_citationtrail_10_1016_j_aei_2024_103041
elsevier_sciencedirect_doi_10_1016_j_aei_2024_103041
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Advanced engineering informatics
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhu X, Hu H, Lin S, et al. Deformable convnets v2: more deformable, better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 9300-9308.
Tang, Zhu, Yuan (b0020) 2022; 138
Tang, Zhu, Yuan (b0030) 2020; 20
Tang, Zhu, Yuan (b0105) 2022; 52
Chao, Gao, Tao (b0150) 2022; 17
Tang, Zhu, Yuan (b0025) 2022; 129
Li, Li, Jia (b0055) 2024; 187
Wang, Xiang, Zhong (b0170) 2018; 112
Vos, Peng, Jenkins (b0080) 2022; 169
Jiao, Xia, Ma (b0215) 2023; 532–533
Zhu, Su, Tang (b0190) 2023; 11
Zhu, Wu, Tang (b0010) 2023; 11
Fernandes, Corchado, Marreiros (b0050) 2022; 52
Safaei, Soleymani, Safaei (b0180) 2023; 146
Wang, Lin, Wang (b0005) 2016; 29
Chen, Wang, Qiao (b0035) 2018; 13
Zhao, Shi, Tan (b0045) 2022; 12
Du, Wang, Zhang (b0095) 2013; 36
Chao, Tao, Wei (b0160) 2020; 31
Ma, Liu, Wu (b0015) 2023; 45
Chen, Cheng, Tang (b0070) 2020; 31
Zhu, Li, Wang (b0185) 2021; 183
Murovec, Čurović, Novaković (b0060) 2020; 165
Zhu, Li, Tang (b0195) 2022; 192
Peng, Xu, Wang (b0065) 2023; 23
Deng, Deng, Lu (b0140) 2023; 23
Tang, Yuan, Zhu (b0165) 2020; 20
Tang, Zhu, Yuan (b0210) 2022; 224
Wang, Taylor, Rees (b0120) 2021; 49
Wang, Yao, Chen (b0075) 2021; 114
Zhang, Li, Wang (b0220) 2020; 398
Zhang, Shi (b0225) 2023; 148
Lan, Li, Liu (b0100) 2022; 200
Tang, Fu, Huang (b0085) 2021; 172
Dong, Tao, Chao (b0145) 2023; 72
Ma, Liu, Wu (b0090) 2024; 114113
Shi, Zheng, Quan (b0130) 2024; 670
Tang, Zhu, Yuan (b0175) 2021; 50
Gawde, Patil, Kumar (b0040) 2023; 123
Chen, Li, Zhang (b0205) 2024; 216
Liu, Liu, Shan (b0115) 2015; 10
Lu, Wang, Maids (b0110) 2017; 67
Chan, Han, Pan (b0135) 2024; 103
Chao, Gao, Tao (b0155) 2022; 65
Yao, Chang, Han (b0125) 2024; 294
10.1016/j.aei.2024.103041_b0200
Murovec (10.1016/j.aei.2024.103041_b0060) 2020; 165
Shi (10.1016/j.aei.2024.103041_b0130) 2024; 670
Wang (10.1016/j.aei.2024.103041_b0170) 2018; 112
Chen (10.1016/j.aei.2024.103041_b0205) 2024; 216
Chao (10.1016/j.aei.2024.103041_b0155) 2022; 65
Wang (10.1016/j.aei.2024.103041_b0120) 2021; 49
Safaei (10.1016/j.aei.2024.103041_b0180) 2023; 146
Dong (10.1016/j.aei.2024.103041_b0145) 2023; 72
Ma (10.1016/j.aei.2024.103041_b0090) 2024; 114113
Zhao (10.1016/j.aei.2024.103041_b0045) 2022; 12
Tang (10.1016/j.aei.2024.103041_b0165) 2020; 20
Chen (10.1016/j.aei.2024.103041_b0070) 2020; 31
Zhu (10.1016/j.aei.2024.103041_b0195) 2022; 192
Zhu (10.1016/j.aei.2024.103041_b0010) 2023; 11
Tang (10.1016/j.aei.2024.103041_b0020) 2022; 138
Fernandes (10.1016/j.aei.2024.103041_b0050) 2022; 52
Zhang (10.1016/j.aei.2024.103041_b0225) 2023; 148
Chao (10.1016/j.aei.2024.103041_b0160) 2020; 31
Vos (10.1016/j.aei.2024.103041_b0080) 2022; 169
Jiao (10.1016/j.aei.2024.103041_b0215) 2023; 532–533
Lu (10.1016/j.aei.2024.103041_b0110) 2017; 67
Zhu (10.1016/j.aei.2024.103041_b0185) 2021; 183
Chan (10.1016/j.aei.2024.103041_b0135) 2024; 103
Liu (10.1016/j.aei.2024.103041_b0115) 2015; 10
Deng (10.1016/j.aei.2024.103041_b0140) 2023; 23
Tang (10.1016/j.aei.2024.103041_b0175) 2021; 50
Tang (10.1016/j.aei.2024.103041_b0025) 2022; 129
Gawde (10.1016/j.aei.2024.103041_b0040) 2023; 123
Chen (10.1016/j.aei.2024.103041_b0035) 2018; 13
Ma (10.1016/j.aei.2024.103041_b0015) 2023; 45
Zhang (10.1016/j.aei.2024.103041_b0220) 2020; 398
Tang (10.1016/j.aei.2024.103041_b0030) 2020; 20
Du (10.1016/j.aei.2024.103041_b0095) 2013; 36
Chao (10.1016/j.aei.2024.103041_b0150) 2022; 17
Lan (10.1016/j.aei.2024.103041_b0100) 2022; 200
Tang (10.1016/j.aei.2024.103041_b0210) 2022; 224
Peng (10.1016/j.aei.2024.103041_b0065) 2023; 23
Zhu (10.1016/j.aei.2024.103041_b0190) 2023; 11
Wang (10.1016/j.aei.2024.103041_b0075) 2021; 114
Tang (10.1016/j.aei.2024.103041_b0085) 2021; 172
Wang (10.1016/j.aei.2024.103041_b0005) 2016; 29
Tang (10.1016/j.aei.2024.103041_b0105) 2022; 52
Li (10.1016/j.aei.2024.103041_b0055) 2024; 187
Yao (10.1016/j.aei.2024.103041_b0125) 2024; 294
References_xml – volume: 20
  start-page: 6576
  year: 2020
  ident: b0165
  article-title: An integrated deep learning method towards fault diagnosis of hydraulic axial piston pump[J]
  publication-title: Sensors
– volume: 31
  year: 2020
  ident: b0160
  article-title: Identification of cavitation intensity for high-speed aviation hydraulic pumps using 2D convolutional neural networks with an input of RGB-based vibration data[J]
  publication-title: Meas. Sci. Technol.
– volume: 20
  start-page: 7152
  year: 2020
  ident: b0030
  article-title: Intelligent diagnosis towards hydraulic axial piston pump using a novel integrated CNN model[J]
  publication-title: Sensors
– volume: 12
  start-page: 21996
  year: 2022
  ident: b0045
  article-title: Research on an intelligent diagnosis method of mechanical faults for small sample data sets[J]
  publication-title: Sci. Rep.
– volume: 13
  start-page: 264
  year: 2018
  end-page: 291
  ident: b0035
  article-title: Basic research on machinery fault diagnostics: Past, present, and future trends[J]
  publication-title: Front. Mech. Eng.
– volume: 52
  start-page: 14246
  year: 2022
  end-page: 14280
  ident: b0050
  article-title: Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review[J]
  publication-title: Appl. Intell.
– volume: 49
  start-page: 207
  year: 2021
  end-page: 219
  ident: b0120
  article-title: Recent advancement of deep learning applications to machine condition monitoring part 1: a critical review[J]
  publication-title: Acoust. Aust.
– volume: 31
  year: 2020
  ident: b0070
  article-title: Pattern recognition of a sensitive feature set based on the orthogonal neighborhood preserving embedding and adaboost_SVM algorithm for rolling bearing early fault diagnosis[J]
  publication-title: Meas. Sci. Technol.
– volume: 129
  start-page: 555
  year: 2022
  end-page: 563
  ident: b0025
  article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization[J]
  publication-title: ISA Trans.
– volume: 138
  year: 2022
  ident: b0020
  article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal[J]
  publication-title: Eng. Fail. Anal.
– volume: 23
  start-page: 2542
  year: 2023
  ident: b0140
  article-title: Fault diagnosis method for imbalanced data based on multi-signal fusion and improved deep convolution generative adversarial network[J]
  publication-title: Sensors
– volume: 103
  year: 2024
  ident: b0135
  article-title: Variational autoencoder-driven adversarial SVDD for power battery anomaly detection on real industrial data[J]
  publication-title: J. Storage Mater.
– volume: 11
  start-page: 594
  year: 2023
  ident: b0190
  article-title: A novel fault diagnosis method based on SWT and VGG-LSTM model for hydraulic axial piston pump[J]
  publication-title: Journal of Marine Science and Engineering
– volume: 200
  year: 2022
  ident: b0100
  article-title: Experimental investigation on cavitation and cavitation detection of axial piston pump based on MLP-Mixer[J]
  publication-title: Measurement
– volume: 183
  year: 2021
  ident: b0185
  article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization[J]
  publication-title: Appl. Acoust.
– volume: 114113
  year: 2024
  ident: b0090
  article-title: An in-situ measurement approach for the oil film characteristics of the spherical valve plate pair in axial piston pumps[J]
  publication-title: Measurement
– volume: 294
  year: 2024
  ident: b0125
  article-title: Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems[J]
  publication-title: Energy
– volume: 65
  start-page: 470
  year: 2022
  end-page: 480
  ident: b0155
  article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals[J]
  publication-title: Sci. China Technol. Sci.
– volume: 52
  year: 2022
  ident: b0105
  article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images[J]
  publication-title: Adv. Eng. Inf.
– volume: 148
  year: 2023
  ident: b0225
  article-title: Sparse and semi-attention guided faults diagnosis approach for distributed online services[J]
  publication-title: Appl. Soft Comput.
– volume: 172
  year: 2021
  ident: b0085
  article-title: A fault diagnosis method for loose slipper failure of piston pump in construction machinery under changing load[J]
  publication-title: Appl. Acoust.
– volume: 45
  year: 2023
  ident: b0015
  article-title: Modeling and analysis of the leakage performance of the spherical valve plate pair in axial piston pumps[J]
  publication-title: Engineering Science and Technology, an International Journal
– volume: 17
  start-page: 36
  year: 2022
  ident: b0150
  article-title: Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network[J]
  publication-title: Front. Mech. Eng.
– volume: 216
  year: 2024
  ident: b0205
  article-title: Soft X-ray image recognition and classification of maize seed cracks based on image enhancement and optimized YOLOv8 model[J]
  publication-title: Comput. Electron. Agric.
– volume: 112
  start-page: 154
  year: 2018
  end-page: 170
  ident: b0170
  article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps[J]
  publication-title: Mech. Syst. Sig. Process.
– volume: 67
  start-page: 105
  year: 2017
  end-page: 117
  ident: b0110
  article-title: Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model[J]
  publication-title: Aerosp. Sci. Technol.
– volume: 50
  year: 2021
  ident: b0175
  article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump[J]
  publication-title: Adv. Eng. Inf.
– volume: 224
  year: 2022
  ident: b0210
  article-title: Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform[J]
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 11
  start-page: 1609
  year: 2023
  ident: b0010
  article-title: Intelligent fault diagnosis methods for hydraulic piston pumps: a review[J]
  publication-title: Journal of Marine Science and Engineering
– reference: Zhu X, Hu H, Lin S, et al. Deformable convnets v2: more deformable, better results[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2019: 9300-9308.
– volume: 398
  start-page: 31
  year: 2020
  end-page: 44
  ident: b0220
  article-title: Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis[J]
  publication-title: Neurocomputing
– volume: 36
  start-page: 487
  year: 2013
  end-page: 504
  ident: b0095
  article-title: Layered clustering multi-fault diagnosis for hydraulic piston pump[J]
  publication-title: Mech. Syst. Sig. Process.
– volume: 72
  year: 2023
  ident: b0145
  article-title: Subsequence time series clustering-based unsupervised approach for anomaly detection of axial piston pumps[J]
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 123
  year: 2023
  ident: b0040
  article-title: Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach : A review of two decades of research[J]
  publication-title: Eng. Appl. Artif. Intel.
– volume: 165
  year: 2020
  ident: b0060
  article-title: Psychoacoustic approach for cavitation detection in centrifugal pumps[J]
  publication-title: Appl. Acoust.
– volume: 10
  year: 2015
  ident: b0115
  article-title: A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network[J]
  publication-title: PLoS One
– volume: 532–533
  year: 2023
  ident: b0215
  article-title: Effect of running-in on the low-pressure tribological performance of valve plate pair in axial piston pumps[J]
  publication-title: Wear
– volume: 187
  year: 2024
  ident: b0055
  article-title: A domain adversarial graph convolutional network for intelligent monitoring of tool wear in machine tools[J]
  publication-title: Comput. Ind. Eng.
– volume: 114
  start-page: 470
  year: 2021
  end-page: 484
  ident: b0075
  article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals[J]
  publication-title: ISA Trans.
– volume: 192
  year: 2022
  ident: b0195
  article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN[J]
  publication-title: Appl. Acoust.
– volume: 29
  start-page: 779
  year: 2016
  end-page: 788
  ident: b0005
  article-title: Remaining useful life prediction based on the Wiener process for an aviation axial piston pump[J]
  publication-title: Chin. J. Aeronaut.
– volume: 670
  year: 2024
  ident: b0130
  article-title: Wasserstein distance regularized graph neural networks[J]
  publication-title: Inf. Sci.
– volume: 146
  year: 2023
  ident: b0180
  article-title: Deep learning algorithm for supervision process in production using acoustic signal[J]
  publication-title: Appl. Soft Comput.
– volume: 23
  start-page: 10706
  year: 2023
  end-page: 10717
  ident: b0065
  article-title: Ensemble multiple distinct ResNet networks with channel-attention mechanism for multisensor fault diagnosis of hydraulic systems[J]
  publication-title: IEEE Sens. J.
– volume: 169
  year: 2022
  ident: b0080
  article-title: Vibration-based anomaly detection using LSTM/SVM approaches[J]
  publication-title: Mech. Syst. Sig. Process.
– volume: 398
  start-page: 31
  year: 2020
  ident: 10.1016/j.aei.2024.103041_b0220
  article-title: Enhanced sparse filtering with strong noise adaptability and its application on rotating machinery fault diagnosis[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.042
– volume: 114113
  year: 2024
  ident: 10.1016/j.aei.2024.103041_b0090
  article-title: An in-situ measurement approach for the oil film characteristics of the spherical valve plate pair in axial piston pumps[J]
  publication-title: Measurement
– volume: 36
  start-page: 487
  issue: 2
  year: 2013
  ident: 10.1016/j.aei.2024.103041_b0095
  article-title: Layered clustering multi-fault diagnosis for hydraulic piston pump[J]
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2012.10.020
– volume: 148
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0225
  article-title: Sparse and semi-attention guided faults diagnosis approach for distributed online services[J]
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110911
– volume: 20
  start-page: 7152
  issue: 24
  year: 2020
  ident: 10.1016/j.aei.2024.103041_b0030
  article-title: Intelligent diagnosis towards hydraulic axial piston pump using a novel integrated CNN model[J]
  publication-title: Sensors
  doi: 10.3390/s20247152
– volume: 52
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0105
  article-title: A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images[J]
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2022.101554
– volume: 112
  start-page: 154
  year: 2018
  ident: 10.1016/j.aei.2024.103041_b0170
  article-title: A data indicator-based deep belief networks to detect multiple faults in axial piston pumps[J]
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2018.04.038
– volume: 183
  year: 2021
  ident: 10.1016/j.aei.2024.103041_b0185
  article-title: Intelligent fault diagnosis of hydraulic piston pump combining improved LeNet-5 and PSO hyperparameter optimization[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2021.108336
– volume: 67
  start-page: 105
  year: 2017
  ident: 10.1016/j.aei.2024.103041_b0110
  article-title: Fault severity recognition of aviation piston pump based on feature extraction of EEMD paving and optimized support vector regression model[J]
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2017.03.039
– volume: 17
  start-page: 36
  issue: 3
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0150
  article-title: Fault diagnosis of axial piston pumps with multi-sensor data and convolutional neural network[J]
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-022-0692-4
– volume: 165
  year: 2020
  ident: 10.1016/j.aei.2024.103041_b0060
  article-title: Psychoacoustic approach for cavitation detection in centrifugal pumps[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107323
– volume: 172
  year: 2021
  ident: 10.1016/j.aei.2024.103041_b0085
  article-title: A fault diagnosis method for loose slipper failure of piston pump in construction machinery under changing load[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107634
– volume: 20
  start-page: 6576
  issue: 22
  year: 2020
  ident: 10.1016/j.aei.2024.103041_b0165
  article-title: An integrated deep learning method towards fault diagnosis of hydraulic axial piston pump[J]
  publication-title: Sensors
  doi: 10.3390/s20226576
– volume: 216
  year: 2024
  ident: 10.1016/j.aei.2024.103041_b0205
  article-title: Soft X-ray image recognition and classification of maize seed cracks based on image enhancement and optimized YOLOv8 model[J]
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.108475
– volume: 187
  year: 2024
  ident: 10.1016/j.aei.2024.103041_b0055
  article-title: A domain adversarial graph convolutional network for intelligent monitoring of tool wear in machine tools[J]
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2023.109795
– volume: 49
  start-page: 207
  issue: 2
  year: 2021
  ident: 10.1016/j.aei.2024.103041_b0120
  article-title: Recent advancement of deep learning applications to machine condition monitoring part 1: a critical review[J]
  publication-title: Acoust. Aust.
  doi: 10.1007/s40857-021-00222-9
– volume: 11
  start-page: 594
  issue: 3
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0190
  article-title: A novel fault diagnosis method based on SWT and VGG-LSTM model for hydraulic axial piston pump[J]
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse11030594
– volume: 532–533
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0215
  article-title: Effect of running-in on the low-pressure tribological performance of valve plate pair in axial piston pumps[J]
  publication-title: Wear
– volume: 65
  start-page: 470
  issue: 2
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0155
  article-title: Adaptive decision-level fusion strategy for the fault diagnosis of axial piston pumps using multiple channels of vibration signals[J]
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-021-1904-7
– ident: 10.1016/j.aei.2024.103041_b0200
  doi: 10.1109/CVPR.2019.00953
– volume: 670
  year: 2024
  ident: 10.1016/j.aei.2024.103041_b0130
  article-title: Wasserstein distance regularized graph neural networks[J]
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2024.120608
– volume: 31
  issue: 10
  year: 2020
  ident: 10.1016/j.aei.2024.103041_b0070
  article-title: Pattern recognition of a sensitive feature set based on the orthogonal neighborhood preserving embedding and adaboost_SVM algorithm for rolling bearing early fault diagnosis[J]
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab8c11
– volume: 294
  year: 2024
  ident: 10.1016/j.aei.2024.103041_b0125
  article-title: Semi-supervised adversarial deep learning for capacity estimation of battery energy storage systems[J]
  publication-title: Energy
  doi: 10.1016/j.energy.2024.130882
– volume: 11
  start-page: 1609
  issue: 8
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0010
  article-title: Intelligent fault diagnosis methods for hydraulic piston pumps: a review[J]
  publication-title: Journal of Marine Science and Engineering
  doi: 10.3390/jmse11081609
– volume: 23
  start-page: 10706
  issue: 10
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0065
  article-title: Ensemble multiple distinct ResNet networks with channel-attention mechanism for multisensor fault diagnosis of hydraulic systems[J]
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2023.3263924
– volume: 13
  start-page: 264
  issue: 2
  year: 2018
  ident: 10.1016/j.aei.2024.103041_b0035
  article-title: Basic research on machinery fault diagnostics: Past, present, and future trends[J]
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-018-0472-3
– volume: 114
  start-page: 470
  year: 2021
  ident: 10.1016/j.aei.2024.103041_b0075
  article-title: Modified multiscale weighted permutation entropy and optimized support vector machine method for rolling bearing fault diagnosis with complex signals[J]
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2020.12.054
– volume: 129
  start-page: 555
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0025
  article-title: Intelligent fault diagnosis of hydraulic piston pump based on deep learning and Bayesian optimization[J]
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2022.01.013
– volume: 23
  start-page: 2542
  issue: 5
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0140
  article-title: Fault diagnosis method for imbalanced data based on multi-signal fusion and improved deep convolution generative adversarial network[J]
  publication-title: Sensors
  doi: 10.3390/s23052542
– volume: 192
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0195
  article-title: Acoustic signal-based fault detection of hydraulic piston pump using a particle swarm optimization enhancement CNN[J]
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2022.108718
– volume: 103
  year: 2024
  ident: 10.1016/j.aei.2024.103041_b0135
  article-title: Variational autoencoder-driven adversarial SVDD for power battery anomaly detection on real industrial data[J]
  publication-title: J. Storage Mater.
– volume: 72
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0145
  article-title: Subsequence time series clustering-based unsupervised approach for anomaly detection of axial piston pumps[J]
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3264045
– volume: 50
  year: 2021
  ident: 10.1016/j.aei.2024.103041_b0175
  article-title: An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump[J]
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2021.101406
– volume: 123
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0040
  article-title: Multi-fault diagnosis of Industrial Rotating Machines using Data-driven approach : A review of two decades of research[J]
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2023.106139
– volume: 10
  issue: 5
  year: 2015
  ident: 10.1016/j.aei.2024.103041_b0115
  article-title: A Fault Diagnosis Methodology for Gear Pump Based on EEMD and Bayesian Network[J]
  publication-title: PLoS One
  doi: 10.1145/2818302
– volume: 200
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0100
  article-title: Experimental investigation on cavitation and cavitation detection of axial piston pump based on MLP-Mixer[J]
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111582
– volume: 12
  start-page: 21996
  issue: 1
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0045
  article-title: Research on an intelligent diagnosis method of mechanical faults for small sample data sets[J]
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-26316-6
– volume: 45
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0015
  article-title: Modeling and analysis of the leakage performance of the spherical valve plate pair in axial piston pumps[J]
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2023.101498
– volume: 138
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0020
  article-title: An adaptive deep learning model towards fault diagnosis of hydraulic piston pump using pressure signal[J]
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2022.106300
– volume: 169
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0080
  article-title: Vibration-based anomaly detection using LSTM/SVM approaches[J]
  publication-title: Mech. Syst. Sig. Process.
  doi: 10.1016/j.ymssp.2021.108752
– volume: 29
  start-page: 779
  issue: 3
  year: 2016
  ident: 10.1016/j.aei.2024.103041_b0005
  article-title: Remaining useful life prediction based on the Wiener process for an aviation axial piston pump[J]
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2015.12.020
– volume: 146
  year: 2023
  ident: 10.1016/j.aei.2024.103041_b0180
  article-title: Deep learning algorithm for supervision process in production using acoustic signal[J]
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110682
– volume: 224
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0210
  article-title: Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform[J]
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108560
– volume: 52
  start-page: 14246
  issue: 12
  year: 2022
  ident: 10.1016/j.aei.2024.103041_b0050
  article-title: Machine learning techniques applied to mechanical fault diagnosis and fault prognosis in the context of real industrial manufacturing use-cases: a systematic literature review[J]
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-022-03344-3
– volume: 31
  issue: 10
  year: 2020
  ident: 10.1016/j.aei.2024.103041_b0160
  article-title: Identification of cavitation intensity for high-speed aviation hydraulic pumps using 2D convolutional neural networks with an input of RGB-based vibration data[J]
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab8d5a
SSID ssj0016897
Score 2.4505935
Snippet Axial piston pumps are key components in hydraulic systems. Their condition monitoring and fault diagnosis are essential in ensuring the safety and reliability...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103041
SubjectTerms Bayesian algorithm
Continuous wavelet transform
Deep learning
Fault diagnosis
Horizontal deformable convolutional networks
Title A novel fault diagnosis method based on nonlinear-CWT and improved YOLOv8 for axial piston pump using output pressure signal
URI https://dx.doi.org/10.1016/j.aei.2024.103041
Volume 64
WOSCitedRecordID wos001379436500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1474-0346
  databaseCode: AIEXJ
  dateStart: 20020101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016897
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMX3qjlpTlwwnLlxzprH6OqCCrUIhHUcLLs3Y1wFTkmsaMckPjrzL7stFBED1wsa2NvVp7P89rPM4S8STgLOHoWfpzOVYCCZ0VQCl8ULCgzThMWzXWzCXZ2ls5m2afR6Kf7FmazYHWdbrdZ819FjWMobPXp7C3E3U-KA3iOQscjih2P_yT4iVcvN3LhzYtu0arcqqLSVWvbK9pTZkuoLYLaFMkoVv7xxdTsIegEA_769fzj-SY1BMutSqk3lS6_0aDsvU5nF5Zd23Stp2m0ag9C8UDsylxNW8cukEPJQ8_WaW13OPYzQ9f9_K36Xg0gs2nsC1mJfrRPbp9WcjdbESUDXcsqWMoojtm0o9XAY7qjQlXfM1ML6zftbhINl0eFrDCyj-jRcO3VStrXLFzPO3SUtsscp8jVFLmZ4g7Zj1iSoVrcn3w4mZ32G1Hj1PTncct2G-OaInhtHX92bXbclelDct_GGTAx-HhERrJ-TB7YmAOsRl8_IT8moOECGi7QwwUMXEDDBZY1XIELIFzAwQUMXAAlCxouYOACCi6g4QIGLuDgAgYuT8mXdyfT4_e-7cjh8yhjrU_DMpWCUpkJtE4lz9DSY4QtgjlqAlpEkQhLGctxEQqZlmguwpDFMi4ZWhEZJEn8jOzhcuUBgYSnko8ZLyMWUoF6QRUqijH-FoVKdKaHJHAPM-e2XL3qmrLIbxTiIXnb39KYWi1_u5g6CeXW2TROZI5ou_m257f5jxfk3vAOvCR77aqTr8hdvmmr9eq1hdov45Wg1w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fault+diagnosis+method+based+on+nonlinear-CWT+and+improved+YOLOv8+for+axial+piston+pump+using+output+pressure+signal&rft.jtitle=Advanced+engineering+informatics&rft.au=Xia%2C+Shiqi&rft.au=Huang%2C+Weidi&rft.au=Zhang%2C+Jie&rft.date=2025-03-01&rft.issn=1474-0346&rft.volume=64&rft.spage=103041&rft_id=info:doi/10.1016%2Fj.aei.2024.103041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_aei_2024_103041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1474-0346&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1474-0346&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1474-0346&client=summon