A (1+ln2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius

We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that T∪F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F⊆E of a laminar set-family. Th...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 489-490; pp. 67 - 74
Main Authors: Cohen, Nachshon, Nutov, Zeev
Format: Journal Article
Language:English
Published: Elsevier B.V 10.06.2013
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that T∪F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F⊆E of a laminar set-family. The best known approximation ratio for Tree Augmentation is 2, even for trees of radius 2. As laminar families play an important role in network design problems, obtaining a better ratio is a major open problem in connectivity network design. We give a (1+ln2)-approximation algorithm for trees of constant radius. Our algorithm is based on a new decomposition of problem feasible solutions, and on an extension of Steiner Tree technique of Zelikovsky to the Set-Cover problem, which may be of independent interest. •We consider making a tree 2-edge-connected by adding a minimum cost edge set.•We give a (1+ln2)-approximation algorithm for trees of constant radius.•Our algorithm is based on a new decomposition of problem feasible solutions.
AbstractList We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that T∪F is 2-edge-connected. Tree Augmentation is equivalent to the problem of finding a minimum-cost edge-cover F⊆E of a laminar set-family. The best known approximation ratio for Tree Augmentation is 2, even for trees of radius 2. As laminar families play an important role in network design problems, obtaining a better ratio is a major open problem in connectivity network design. We give a (1+ln2)-approximation algorithm for trees of constant radius. Our algorithm is based on a new decomposition of problem feasible solutions, and on an extension of Steiner Tree technique of Zelikovsky to the Set-Cover problem, which may be of independent interest. •We consider making a tree 2-edge-connected by adding a minimum cost edge set.•We give a (1+ln2)-approximation algorithm for trees of constant radius.•Our algorithm is based on a new decomposition of problem feasible solutions.
Author Cohen, Nachshon
Nutov, Zeev
Author_xml – sequence: 1
  givenname: Nachshon
  surname: Cohen
  fullname: Cohen, Nachshon
  email: nachshonc@gmail.com
– sequence: 2
  givenname: Zeev
  surname: Nutov
  fullname: Nutov, Zeev
  email: nutov@openu.ac.il
BookMark eNp9kM1OAyEURompiW31Adyx1JgZgWGGIa6axr-kiRtdE4aBStOBCrTat5emrlz0bu5d3PMl35mAkfNOA3CNUYkRbu5XZVKxJAhXJaIlQvQMjHHLeEEIpyMwRhWiRcVZfQEmMa5Qnpo1Y_A1gzf4bu3IbSE3m-B_7CCT9Q7K9dIHmz4HaHyAg3V22A6F8jFBUuh-qfPtnFbJ7mzaQ7ldDtqlI-sNTEHrCL9zAMx_MUmXYJC93cZLcG7kOuqrvz0FH0-P7_OXYvH2_DqfLQpFOEsFxVj1TUcM121rmFac0qZqTNWTnrCu5pi0VVd3kuPOUM50b1RlOolargzDqpoCfMxVwccYtBGbkMuFvcBIHJyJlcjOxMGZQFRkZ5lh_xhlj51SkHZ9knw4kjpX2lkdRFRWO6V7G7Ik0Xt7gv4Fn5aLRg
CitedBy_id crossref_primary_10_1007_s00453_020_00765_9
crossref_primary_10_1007_s00453_016_0270_4
crossref_primary_10_1007_s10107_023_02018_3
crossref_primary_10_1038_s41598_020_75087_5
crossref_primary_10_1007_s00224_020_10025_6
crossref_primary_10_1145_3722101
crossref_primary_10_1287_ijoc_2022_0295
crossref_primary_10_1007_s10107_022_01854_z
crossref_primary_10_1137_21M1430601
crossref_primary_10_1145_3182395
crossref_primary_10_1016_j_orl_2022_10_007
crossref_primary_10_1137_21M1421143
crossref_primary_10_1137_21M1453505
crossref_primary_10_1145_2786981
crossref_primary_10_1016_j_tcs_2023_114367
crossref_primary_10_1007_s00224_024_10175_x
crossref_primary_10_1016_j_orl_2022_10_002
crossref_primary_10_1016_j_orl_2023_03_008
crossref_primary_10_1109_TNSM_2023_3237832
Cites_doi 10.1016/S0166-218X(02)00218-4
10.1016/j.dam.2010.04.002
10.1016/0304-3975(82)90059-7
10.1016/j.ipl.2010.12.010
10.1007/s004930170004
10.1007/3-540-48481-7_44
10.1016/j.orl.2008.01.009
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.tcs.2013.04.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 74
ExternalDocumentID 10_1016_j_tcs_2013_04_004
S0304397513002661
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
G-2
HZ~
R2-
SEW
TAE
WUQ
ZY4
~HD
ID FETCH-LOGICAL-c297t-411cd6b2f9e88f7ec944636f3d2d27b591283b5ba91bf497edfc3fba089cf71c3
ISICitedReferencesCount 40
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000320973900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Sat Nov 29 05:15:13 EST 2025
Tue Nov 18 21:31:42 EST 2025
Fri Feb 23 02:30:22 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Edge-connectivity
Tree Augmentation
Approximation algorithms
Laminar family
Local replacement
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-411cd6b2f9e88f7ec944636f3d2d27b591283b5ba91bf497edfc3fba089cf71c3
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2013.04.004
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_tcs_2013_04_004
crossref_citationtrail_10_1016_j_tcs_2013_04_004
elsevier_sciencedirect_doi_10_1016_j_tcs_2013_04_004
PublicationCentury 2000
PublicationDate 2013-06-10
PublicationDateYYYYMMDD 2013-06-10
PublicationDate_xml – month: 06
  year: 2013
  text: 2013-06-10
  day: 10
PublicationDecade 2010
PublicationTitle Theoretical computer science
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Fredrickson, Jájá (br000020) 1982; 19
Nagamochi (br000050) 2003; 126
Schrijver (br000055) 2004
J. Cheriyan, T. Jordán, R. Ravi, On 2-coverings and 2-packing of laminar families, in: ESA, 1999, pp. 510–520.
Cheriyan, Karloff, Khandekar, Könemann (br000010) 2008; 36
Maduel, Nutov (br000045) 2010; 158
Goemans, Williamson (br000025) 1995
Zelikovsky (br000060) 1995
Jain (br000030) 2001; 21
Even, Kortsarz, Nutov (br000015) 2011; 111
Kortsarz, Nutov (br000040) 2007
Khuller (br000035) 1995
Even (10.1016/j.tcs.2013.04.004_br000015) 2011; 111
Schrijver (10.1016/j.tcs.2013.04.004_br000055) 2004
10.1016/j.tcs.2013.04.004_br000005
Kortsarz (10.1016/j.tcs.2013.04.004_br000040) 2007
Fredrickson (10.1016/j.tcs.2013.04.004_br000020) 1982; 19
Nagamochi (10.1016/j.tcs.2013.04.004_br000050) 2003; 126
Khuller (10.1016/j.tcs.2013.04.004_br000035) 1995
Cheriyan (10.1016/j.tcs.2013.04.004_br000010) 2008; 36
Zelikovsky (10.1016/j.tcs.2013.04.004_br000060) 1995
Jain (10.1016/j.tcs.2013.04.004_br000030) 2001; 21
Maduel (10.1016/j.tcs.2013.04.004_br000045) 2010; 158
Goemans (10.1016/j.tcs.2013.04.004_br000025) 1995
References_xml – volume: 21
  start-page: 39
  year: 2001
  end-page: 60
  ident: br000030
  article-title: A factor 2 approximation algorithm for the generalized Steiner network problem
  publication-title: Combinatorica
– volume: 36
  start-page: 399
  year: 2008
  end-page: 401
  ident: br000010
  article-title: On the integrality ratio for tree augmentation
  publication-title: Operations Research Letters
– volume: 19
  start-page: 189
  year: 1982
  end-page: 201
  ident: br000020
  article-title: On the relationship between the biconnectivity augmentation and traveling salesman problem
  publication-title: Theorethical Computer Science
– year: 2007
  ident: br000040
  article-title: Approximating minimum cost connectivity problems
  publication-title: Approximation Algorithms and Metahueristics
– start-page: 144
  year: 1995
  end-page: 191
  ident: br000025
  article-title: The primal dual method for approximation algorithms and its applications to network design problems
  publication-title: Approximation Algorithms for NP-hard Problems
– start-page: 236
  year: 1995
  end-page: 265
  ident: br000035
  article-title: Approximation algorithms for for finding highly connected subgraphs
  publication-title: Approximation Algorithms for NP-hard Problems
– reference: J. Cheriyan, T. Jordán, R. Ravi, On 2-coverings and 2-packing of laminar families, in: ESA, 1999, pp. 510–520.
– volume: 111
  start-page: 296
  year: 2011
  end-page: 300
  ident: br000015
  article-title: A 1.5 approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2
  publication-title: Information Processing Letters
– year: 2004
  ident: br000055
  article-title: Combinatorial Optimization, Polyhedra and Efficiency
– year: 1995
  ident: br000060
  article-title: Better approximation bounds for the network and euclidean steiner tree problems. Technical report
– volume: 126
  start-page: 83
  year: 2003
  end-page: 113
  ident: br000050
  article-title: An approximation for finding a smallest 2-edge connected subgraph containing a specified spanning tree
  publication-title: Discrete Applied Mathematics
– volume: 158
  start-page: 1424
  year: 2010
  end-page: 1432
  ident: br000045
  article-title: Covering a laminar family by leaf to leaf links
  publication-title: Discrete Applied Mathematics
– start-page: 236
  year: 1995
  ident: 10.1016/j.tcs.2013.04.004_br000035
  article-title: Approximation algorithms for for finding highly connected subgraphs
– volume: 126
  start-page: 83
  year: 2003
  ident: 10.1016/j.tcs.2013.04.004_br000050
  article-title: An approximation for finding a smallest 2-edge connected subgraph containing a specified spanning tree
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/S0166-218X(02)00218-4
– year: 2007
  ident: 10.1016/j.tcs.2013.04.004_br000040
  article-title: Approximating minimum cost connectivity problems
– volume: 158
  start-page: 1424
  issue: 13
  year: 2010
  ident: 10.1016/j.tcs.2013.04.004_br000045
  article-title: Covering a laminar family by leaf to leaf links
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2010.04.002
– year: 2004
  ident: 10.1016/j.tcs.2013.04.004_br000055
– volume: 19
  start-page: 189
  issue: 2
  year: 1982
  ident: 10.1016/j.tcs.2013.04.004_br000020
  article-title: On the relationship between the biconnectivity augmentation and traveling salesman problem
  publication-title: Theorethical Computer Science
  doi: 10.1016/0304-3975(82)90059-7
– start-page: 144
  year: 1995
  ident: 10.1016/j.tcs.2013.04.004_br000025
  article-title: The primal dual method for approximation algorithms and its applications to network design problems
– volume: 111
  start-page: 296
  issue: 6
  year: 2011
  ident: 10.1016/j.tcs.2013.04.004_br000015
  article-title: A 1.5 approximation algorithm for augmenting edge-connectivity of a graph from 1 to 2
  publication-title: Information Processing Letters
  doi: 10.1016/j.ipl.2010.12.010
– volume: 21
  start-page: 39
  issue: 1
  year: 2001
  ident: 10.1016/j.tcs.2013.04.004_br000030
  article-title: A factor 2 approximation algorithm for the generalized Steiner network problem
  publication-title: Combinatorica
  doi: 10.1007/s004930170004
– ident: 10.1016/j.tcs.2013.04.004_br000005
  doi: 10.1007/3-540-48481-7_44
– volume: 36
  start-page: 399
  issue: 4
  year: 2008
  ident: 10.1016/j.tcs.2013.04.004_br000010
  article-title: On the integrality ratio for tree augmentation
  publication-title: Operations Research Letters
  doi: 10.1016/j.orl.2008.01.009
– year: 1995
  ident: 10.1016/j.tcs.2013.04.004_br000060
SSID ssj0000576
Score 2.3241987
Snippet We consider the Tree Augmentation problem: given a graph G=(V,E) with edge-costs and a tree T on V disjoint to E, find a minimum-cost edge-subset F⊆E such that...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Approximation algorithms
Edge-connectivity
Laminar family
Local replacement
Tree Augmentation
Title A (1+ln2)-approximation algorithm for minimum-cost 2-edge-connectivity augmentation of trees with constant radius
URI https://dx.doi.org/10.1016/j.tcs.2013.04.004
Volume 489-490
WOSCitedRecordID wos000320973900006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLgc48FhAu7w0Bw5AZFQnTm0fC1oESFQcFqm3KHGc3VZpsmrTUvHr8StpdtlF7IGLFUWN-5ivnrFn5vsQep2aGF5SjlMhKaYqkpgTSXBqOgZYnBmvY8Um2HTKZzPxfTD41fbCbEtWVXy3Exf_1dT6nja2aZ29hbm7SfUNfa2Nrkdtdj3-k-EnJmgMiB4_BGUVhIHZ-GPLHb6bu0bFIC3P6tW8OV_aKkNDL7LcLLGs100QYnPCpq_1Aiy9tES6OVv6HiUbXZpM9rqrWjfxZROs0nzuDxEWHQK7HknpxSMC73G71EfbHTI1vObn-5qA6aaptzZzotS2fzRhZSKwL1L1LVkm7SKcNEq73FJuZO1GvUXT6XF49-s0e_5Y2N0Zw-J9Iw3HOoksP60TLr5Mon3FuXUlh2012yLRUyRmimREE0slexCyWPAhOph8OZl93fvxmLlMt_8SbU7cVgde-RzXRzW9SOX0IbrvtxgwcdB4hAaqOkQPWvkO8Kv5Ibr3raPsXT9GPyfwBggEUFYQwlu4jBjoEAMaMdBHDFyDGOgjBuoCLGLAIAZaxIBDzBP049PJ6cfP2KtyYBkK1mBKiMzHWVgIxXnBlBTUkM4VUR7mIctioSOeKIuzVJCsoIKpvJBRkaUjLmTBiIyeomFVV-oIgRiTQiqRaceiaBYrocPVPJJ6Bz7W0_P4GI3aXzWRnrLeKKeUyY3WPEbvukcuHF_L315MW1MlHv4ukEw07G5-7Nlt3uM5urv_a7xAw2a1US_RHblt5uvVK4-536RgoLA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+%28+1+%2B+ln+2+%29+-approximation+algorithm+for+minimum-cost+2-edge-connectivity+augmentation+of+trees+with+constant+radius&rft.jtitle=Theoretical+computer+science&rft.au=Cohen%2C+Nachshon&rft.au=Nutov%2C+Zeev&rft.date=2013-06-10&rft.issn=0304-3975&rft.volume=489-490&rft.spage=67&rft.epage=74&rft_id=info:doi/10.1016%2Fj.tcs.2013.04.004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2013_04_004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon