The q -WZ method for infinite series
Motivated by the telescoping proofs of two identities of Andrews and Warnaar, we find that infinite q -shifted factorials can be incorporated into the implementation of the q -Zeilberger algorithm in the approach of Chen, Hou and Mu to prove nonterminating basic hypergeometric series identities. Thi...
Uložené v:
| Vydané v: | Journal of symbolic computation Ročník 44; číslo 8; s. 960 - 971 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.08.2009
|
| Predmet: | |
| ISSN: | 0747-7171, 1095-855X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Motivated by the telescoping proofs of two identities of Andrews and Warnaar, we find that infinite
q
-shifted factorials can be incorporated into the implementation of the
q
-Zeilberger algorithm in the approach of Chen, Hou and Mu to prove nonterminating basic hypergeometric series identities. This observation enables us to extend the
q
-WZ method to identities on infinite series. We give the
q
-WZ pairs for some classical identities such as the
q
-Gauss sum, the
6
ϕ
5
sum, the Ramanujan’s
1
ψ
1
sum and Bailey’s
6
ψ
6
sum. |
|---|---|
| ISSN: | 0747-7171 1095-855X |
| DOI: | 10.1016/j.jsc.2008.11.005 |