Integrated scheduling for remanufacturing system considering component commonality using improved multi-objective genetic algorithm
•Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic strategies to obtain high-quality solutions for above problem.•Comparative experiments are executed on several test instances to verify the perfo...
Uloženo v:
| Vydáno v: | Computers & industrial engineering Ročník 182; s. 109419 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2023
|
| Témata: | |
| ISSN: | 0360-8352, 1879-0550 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic strategies to obtain high-quality solutions for above problem.•Comparative experiments are executed on several test instances to verify the performance of IMOGA.
The existing researches on scheduling for remanufacturing system explicitly or implicitly subjects to the component matching requirements while ignoring the repaired component commonality, which is inconsistent with reality. Thus, this paper proposes a novel integrated scheduling method for remanufacturing system with disassembly-reprocessing-reassembly considering component commonality, where components obtained by reprocessing no longer only be used to reassemble their original product, but also be used to reassemble other remanufacturing products. And a mathematic model is formulated to simultaneously minimize the completion time and total energy consumption. Then, an improved multi-objective genetic algorithm (IMOGA) with a new double-layer representation scheme is developed to handle the considered problem. In the IMOGA, a left-shift strategy is developed to utilize workstation idle time and a component-relink strategy is designed to solve the reassembly decision with component commonality. In addition, the crossover and mutation operators based on grouping strategy are designed to enhance algorithm search ability. After, a local search with two heuristic strategies is proposed to further improve the quality of solutions in the elite set. Finally, a series of comparative experiments are carried out and the results show that IMOGA can tackle this scheduling problem effectively. |
|---|---|
| AbstractList | •Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic strategies to obtain high-quality solutions for above problem.•Comparative experiments are executed on several test instances to verify the performance of IMOGA.
The existing researches on scheduling for remanufacturing system explicitly or implicitly subjects to the component matching requirements while ignoring the repaired component commonality, which is inconsistent with reality. Thus, this paper proposes a novel integrated scheduling method for remanufacturing system with disassembly-reprocessing-reassembly considering component commonality, where components obtained by reprocessing no longer only be used to reassemble their original product, but also be used to reassemble other remanufacturing products. And a mathematic model is formulated to simultaneously minimize the completion time and total energy consumption. Then, an improved multi-objective genetic algorithm (IMOGA) with a new double-layer representation scheme is developed to handle the considered problem. In the IMOGA, a left-shift strategy is developed to utilize workstation idle time and a component-relink strategy is designed to solve the reassembly decision with component commonality. In addition, the crossover and mutation operators based on grouping strategy are designed to enhance algorithm search ability. After, a local search with two heuristic strategies is proposed to further improve the quality of solutions in the elite set. Finally, a series of comparative experiments are carried out and the results show that IMOGA can tackle this scheduling problem effectively. |
| ArticleNumber | 109419 |
| Author | Wang, Kaipu Du, Baigang Guo, Jun Zou, Junfeng |
| Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0003-3469-4955 surname: Guo fullname: Guo, Jun email: junguo@whut.edu.cn organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 2 givenname: Junfeng orcidid: 0000-0003-1279-1594 surname: Zou fullname: Zou, Junfeng email: zea1021@163.com organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 3 givenname: Baigang surname: Du fullname: Du, Baigang email: dbg767@163.com organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China – sequence: 4 givenname: Kaipu surname: Wang fullname: Wang, Kaipu email: wangkaipu@whut.edu.cn organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China |
| BookMark | eNp9kM9OwzAMxiM0JMbgAbj1BTqSJl0bcUITfyZN4gLnKE2dLlObTEk6aWdenJRx4jD5YOezf1b83aKZdRYQeiB4STBZPe6XysCywAVNb84Iv0JzUlc8x2WJZ2iO6QrnNS2LG3Qbwh5jzEpO5uh7YyN0XkZos6B20I69sV2mnc88DNKOWqo4-kkLpxBhyJSzwbTwKyk3HNI_bJyqwVnZm3jKxjD1zHDw7pjWDmMfTe6aPahojpB1YCEalcm-c97E3XCHrrXsA9z_5QX6en35XL_n24-3zfp5m6uCVzGngHFdF0wz3mjWlg1tSckarpWWFAA3uoZKp-BFhTWjLcM1gdTk6XZCFF2g6rxXeReCBy2UiTIaZ6OXphcEi8lLsU86iMlLcfYykeQfefBmkP50kXk6M5BOOhrwIqQRq6A1PjkhWmcu0D-eGpOs |
| CitedBy_id | crossref_primary_10_1016_j_cie_2025_111099 crossref_primary_10_1007_s40747_025_01907_8 crossref_primary_10_1016_j_cie_2023_109817 crossref_primary_10_1080_0305215X_2023_2296538 crossref_primary_10_1016_j_jclepro_2024_142916 crossref_primary_10_1016_j_trc_2025_105288 crossref_primary_10_1016_j_compeleceng_2024_109813 crossref_primary_10_1155_2024_8416933 crossref_primary_10_3390_machines13090762 |
| Cites_doi | 10.1007/s00170-007-1354-8 10.1080/00207543.2014.994714 10.1016/j.cie.2018.04.048 10.1080/00207543.2014.962112 10.1016/j.cie.2016.01.015 10.1016/j.eswa.2020.113381 10.1016/j.swevo.2021.100858 10.1016/j.jmsy.2022.12.008 10.1007/s00170-017-0057-z 10.1109/TSMC.2019.2930418 10.1023/A:1008202821328 10.1109/4235.996017 10.1016/j.jmsy.2016.09.008 10.1109/TASE.2021.3061506 10.1007/978-981-33-4244-6 10.1016/j.jmsy.2020.08.006 10.1016/j.ijpe.2016.12.009 10.1016/S0272-6963(00)00034-6 10.1016/j.cie.2021.107219 10.1109/TII.2018.2884845 10.1016/j.rcim.2022.102509 10.1109/TCYB.2019.2901834 10.1016/j.ejor.2020.11.016 10.1108/AA-12-2017-180 10.1016/j.jmsy.2022.03.008 10.1016/j.jclepro.2020.123364 10.1080/00207543.2022.2058432 10.1080/00207543.2021.1905902 10.1016/j.cageo.2005.06.008 10.1016/j.jclepro.2019.06.265 10.1007/s11465-019-0560-z 10.1007/s11356-021-17292-x 10.1016/j.jclepro.2019.117805 10.1080/0305215X.2017.1391240 10.1016/j.jclepro.2017.01.166 10.3934/mbe.2019101 10.1016/j.cie.2022.108146 10.1016/j.cie.2021.107489 10.1007/s10489-018-1343-7 10.1016/j.ejor.2017.08.032 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd |
| Copyright_xml | – notice: 2023 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cie.2023.109419 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-0550 |
| ExternalDocumentID | 10_1016_j_cie_2023_109419 S0360835223004436 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKG AABNK AACTN AAEDT AAEDW AAFWJ AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AARIN AAXUO ABAOU ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADMUD ADRHT ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM LX9 LY1 LY7 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SST SSW SSZ T5K TAE TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c297t-3e008824f49bf4d5b3d154b9fcfa3ee0bf8e7f7f79270f43d4081ecfa936011c3 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042629000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-8352 |
| IngestDate | Sat Nov 29 07:22:41 EST 2025 Tue Nov 18 21:09:38 EST 2025 Fri Feb 23 02:36:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Energy consumption Component commonality Scheduling Remanufacturing system Improved multi-objective genetic algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c297t-3e008824f49bf4d5b3d154b9fcfa3ee0bf8e7f7f79270f43d4081ecfa936011c3 |
| ORCID | 0000-0003-1279-1594 0000-0003-3469-4955 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_cie_2023_109419 crossref_primary_10_1016_j_cie_2023_109419 elsevier_sciencedirect_doi_10_1016_j_cie_2023_109419 |
| PublicationCentury | 2000 |
| PublicationDate | August 2023 2023-08-00 |
| PublicationDateYYYYMMDD | 2023-08-01 |
| PublicationDate_xml | – month: 08 year: 2023 text: August 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & industrial engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Li, Li, Tang, Yang (b0125) 2019; 16 Lu, Liu, Zhang, Yin (b0155) 2022 Chaouch, Driss, Ghedira (b0010) 2019; 49 Li, Janardhanan (b0130) 2021 Leng, Ruan, Song, Liu, Fu, Ding, Chen (b0110) 2021 Leng, Yan, Liu, Xu, Zhao, Shi, Chen (b0120) 2020; 50 Shi, Zhang, Zhang, Wang, Lin, Feng (b0185) 2020; 57 Koohestani (b0095) 2020 Kim, Yu, Lee (b0090) 2015; 53 Liu, Piplani, Toro (b0150) 2022; 60 Liang, Guo, Du, Li, Guo, Yang, Pang (b0135) 2021 Guo, Pu, Du, Li (b0055) 2021; 60 Liu, Hu, Hu, Zhao, Wang (b0145) 2015; 53 Fu, Zhou, Guo, Qi (b0035) 2021 Liu, Zhang (b0140) 2018; 269 Zhang, Tang, Zhang, Jiang, Cai (b0250) 2021 Wang, Tian, Zhang, Jabarullah, Li, Fathollahi-Fard, Li (b0225) 2021 Zhang, Rao, Li (b0235) 2008; 39 Oh, Behdad (b0170) 2017; 184 Guo, Zhou, Liu, Qi (b0065) 2020; 50 Dong, Ye (b0030) 2022; 169 Guide (b0050) 2000; 18 Zhang, Zheng, Ahmad (b0240) 2022 Jiang, Yi, Chen, Zhu (b0075) 2016; 41 Zhao, Peng, Li, Lv, Li, Zhang (b0255) 2019; 14 Audet, Bigeon, Cartier, Le Digabel, Salomon (b0005) 2021; 292 Deb, Pratap, Agarwal, Meyarivan (b0020) 2002; 6 Deng, Xu, Song, Zhao (b0025) 2021 Yu, Lee (b0230) 2018; 120 Wang, Tian, Zhang, Li, Zhang (b0215) 2023 Tian, Ren, Feng, Zhou, Zhang, Tan (b0195) 2019; 15 Wang, Tian, Yuan, Pham (b0210) 2021 Wang, Gao, Li, Li (b0205) 2022; 19 Kerin, Pham (b0080) 2019 Guo, Zhong, Li, Du, Guo (b0060) 2019; 39 Gao, Wang, Luo, Jiang, Sadollah, Pan (b0040) 2017; 50 Giglio, Paolucci, Roshani (b0045) 2017; 148 Storn, Price (b0190) 1997; 11 Zhang, Zheng, Ahmad (b0245) 2023; 66 Hojati (b0070) 2016; 94 Chen, Xia, Liu, Feng (b0015) 2006; 32 Wang, Li, Gao, Li (b0200) 2021 Leng, Jiang, Xu, Liu, Zhao, Bian, Shi (b0105) 2019; 234 Shi, Zhang, Zhang, Chen (b0180) 2021 Leng, Sha, Lin, Jing, Liu, Chen (b0115) 2022; 1–20 Kim, Zhou, Lee (b0085) 2017; 91 Leng, Chen, Sha, Ye, Liu, Chen (b0100) 2022; 63 Luo, Zhang, Fan (b0160) 2021 Montgomery (b0165) 2005 Wang, Tian, Zhang, Xu, Miao (b0220) 2021 Ren, Zhang, Zhao, Triebe, Meng (b0175) 2018; 50 Kim (10.1016/j.cie.2023.109419_b0085) 2017; 91 Kim (10.1016/j.cie.2023.109419_b0090) 2015; 53 Storn (10.1016/j.cie.2023.109419_b0190) 1997; 11 Wang (10.1016/j.cie.2023.109419_b0205) 2022; 19 Hojati (10.1016/j.cie.2023.109419_b0070) 2016; 94 Luo (10.1016/j.cie.2023.109419_b0160) 2021 Shi (10.1016/j.cie.2023.109419_b0180) 2021 Li (10.1016/j.cie.2023.109419_b0125) 2019; 16 Wang (10.1016/j.cie.2023.109419_b0225) 2021 Chen (10.1016/j.cie.2023.109419_b0015) 2006; 32 Zhang (10.1016/j.cie.2023.109419_b0240) 2022 Liang (10.1016/j.cie.2023.109419_b0135) 2021 Audet (10.1016/j.cie.2023.109419_b0005) 2021; 292 Leng (10.1016/j.cie.2023.109419_b0100) 2022; 63 Lu (10.1016/j.cie.2023.109419_b0155) 2022 Fu (10.1016/j.cie.2023.109419_b0035) 2021 Liu (10.1016/j.cie.2023.109419_b0150) 2022; 60 Yu (10.1016/j.cie.2023.109419_b0230) 2018; 120 Dong (10.1016/j.cie.2023.109419_b0030) 2022; 169 Zhang (10.1016/j.cie.2023.109419_b0235) 2008; 39 Guo (10.1016/j.cie.2023.109419_b0055) 2021; 60 Wang (10.1016/j.cie.2023.109419_b0210) 2021 Li (10.1016/j.cie.2023.109419_b0130) 2021 Kerin (10.1016/j.cie.2023.109419_b0080) 2019 Gao (10.1016/j.cie.2023.109419_b0040) 2017; 50 Leng (10.1016/j.cie.2023.109419_b0115) 2022; 1–20 Ren (10.1016/j.cie.2023.109419_b0175) 2018; 50 Leng (10.1016/j.cie.2023.109419_b0110) 2021 Koohestani (10.1016/j.cie.2023.109419_b0095) 2020 Jiang (10.1016/j.cie.2023.109419_b0075) 2016; 41 Oh (10.1016/j.cie.2023.109419_b0170) 2017; 184 Guo (10.1016/j.cie.2023.109419_b0060) 2019; 39 Deng (10.1016/j.cie.2023.109419_b0025) 2021 Guo (10.1016/j.cie.2023.109419_b0065) 2020; 50 Guide (10.1016/j.cie.2023.109419_b0050) 2000; 18 Liu (10.1016/j.cie.2023.109419_b0145) 2015; 53 Giglio (10.1016/j.cie.2023.109419_b0045) 2017; 148 Wang (10.1016/j.cie.2023.109419_b0200) 2021 Shi (10.1016/j.cie.2023.109419_b0185) 2020; 57 Leng (10.1016/j.cie.2023.109419_b0120) 2020; 50 Wang (10.1016/j.cie.2023.109419_b0215) 2023 Liu (10.1016/j.cie.2023.109419_b0140) 2018; 269 Zhao (10.1016/j.cie.2023.109419_b0255) 2019; 14 Chaouch (10.1016/j.cie.2023.109419_b0010) 2019; 49 Zhang (10.1016/j.cie.2023.109419_b0250) 2021 Tian (10.1016/j.cie.2023.109419_b0195) 2019; 15 Montgomery (10.1016/j.cie.2023.109419_b0165) 2005 Zhang (10.1016/j.cie.2023.109419_b0245) 2023; 66 Leng (10.1016/j.cie.2023.109419_b0105) 2019; 234 Wang (10.1016/j.cie.2023.109419_b0220) 2021 Deb (10.1016/j.cie.2023.109419_b0020) 2002; 6 |
| References_xml | – volume: 53 start-page: 1819 year: 2015 end-page: 1831 ident: b0090 article-title: Scheduling algorithms for remanufacturing systems with parallel flow-shop-type reprocessing lines publication-title: International Journal of Production Research. – volume: 60 start-page: 2884 year: 2021 end-page: 2900 ident: b0055 article-title: Multi-objective optimisation of stochastic hybrid production line balancing including assembly and disassembly tasks publication-title: International Journal of Production Research. – volume: 50 start-page: 965 year: 2017 end-page: 981 ident: b0040 article-title: Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: A case study publication-title: Engineering Optimization. – volume: 91 start-page: 3697 year: 2017 end-page: 3708 ident: b0085 article-title: Priority scheduling to minimize the total tardiness for remanufacturing systems with flow-shop-type reprocessing lines publication-title: International Journal of Advanced Manufacturing Technology. – volume: 234 start-page: 767 year: 2019 end-page: 778 ident: b0105 article-title: Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing publication-title: Journal of Cleaner Production. – volume: 32 start-page: 230 year: 2006 end-page: 239 ident: b0015 article-title: Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm publication-title: Computers & Geosciences. – year: 2023 ident: b0215 article-title: A hybrid genetic algorithm with multiple decoding methods for energy-aware remanufacturing system scheduling problem publication-title: Robotics and Computer-Integrated Manufacturing. https:// – year: 2022 ident: b0155 article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop publication-title: Expert Systems with Applications – volume: 39 start-page: 965 year: 2008 end-page: 974 ident: b0235 article-title: An effective hybrid genetic algorithm for the job shop scheduling problem publication-title: International Journal of Advanced Manufacturing Technology. – volume: 169 year: 2022 ident: b0030 article-title: Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system publication-title: Computers & Industrial Engineering. – year: 2021 ident: b0130 article-title: Modelling and solving profit-oriented U-shaped partial disassembly line balancing problem publication-title: Expert Systems with Applications – volume: 94 start-page: 1 year: 2016 end-page: 5 ident: b0070 article-title: Minimizing make-span in 2-stage disassembly flow-shop scheduling problem publication-title: Computers & Industrial Engineering. – year: 2021 ident: b0025 article-title: Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem publication-title: Applied Soft Computing – volume: 63 start-page: 143 year: 2022 end-page: 161 ident: b0100 article-title: Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services publication-title: Journal of Manufacturing Systems. – volume: 53 start-page: 5755 year: 2015 end-page: 5781 ident: b0145 article-title: A hybrid PSO-GA algorithm for job shop scheduling in machine tool production publication-title: International Journal of Production Research. – year: 2021 ident: b0180 article-title: A new bifuzzy optimization method for remanufacturing scheduling using extended discrete particle swarm optimization algorithm publication-title: Computers & Industrial Engineering – volume: 50 start-page: 182 year: 2020 end-page: 192 ident: b0120 article-title: ManuChain: Combining Permissioned Blockchain With a Holistic Optimization Model as Bi-Level Intelligence for Smart Manufacturing publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems. – year: 2021 ident: b0220 article-title: Modeling and scheduling for remanufacturing systems with disassembly, reprocessing, and reassembly considering total energy consumption publication-title: Environmental Science and Pollution Research – volume: 57 start-page: 94 year: 2020 end-page: 108 ident: b0185 article-title: A new environment-aware scheduling method for remanufacturing system with non-dedicated reprocessing lines using improved flower pollination algorithm publication-title: Journal of Manufacturing Systems. – year: 2021 ident: b0210 article-title: Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm publication-title: Journal of Intelligent Manufacturing – year: 2021 ident: b0200 article-title: Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D publication-title: Swarm and Evolutionary Computation – year: 2019 ident: b0080 article-title: A review of emerging industry 4.0 technologies in remanufacturing publication-title: Journal of Cleaner Production. – volume: 120 start-page: 266 year: 2018 end-page: 278 ident: b0230 article-title: Scheduling algorithms for job-shop-type remanufacturing systems with component matching requirement publication-title: Computers & Industrial Engineering. – year: 2020 ident: b0095 article-title: A crossover operator for improving the efficiency of permutation-based genetic algorithms publication-title: Expert Systems with Applications – year: 2005 ident: b0165 article-title: Design and Analysis of Experiments – year: 2022 ident: b0240 article-title: The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm publication-title: Journal of Intelligent Manufacturing – volume: 39 start-page: 140 year: 2019 end-page: 153 ident: b0060 article-title: A hybrid artificial fish swam algorithm for disassembly sequence planning considering setup time publication-title: Assembly Automation. – volume: 184 start-page: 168 year: 2017 end-page: 178 ident: b0170 article-title: Simultaneous reassembly and procurement planning in assemble-to-order remanufacturing systems publication-title: International Journal of Production Economics. – volume: 50 start-page: 3770 year: 2018 end-page: 3783 ident: b0175 article-title: An MCDM-Based Multiobjective General Variable Neighborhood Search Approach for Disassembly Line Balancing Problem publication-title: IEEE Transactions on Systems Man Cybernetics-Systems. – volume: 269 start-page: 244 year: 2018 end-page: 257 ident: b0140 article-title: Capacitated disassembly scheduling under stochastic yield and demand publication-title: European Journal of Operational Research. – volume: 15 start-page: 2456 year: 2019 end-page: 2468 ident: b0195 article-title: Modeling and Planning for Dual-Objective Selective Disassembly Using AND/OR Graph and Discrete Artificial Bee Colony publication-title: IEEE Transactions on Industrial Informatics. – volume: 49 start-page: 1903 year: 2019 end-page: 1924 ident: b0010 article-title: A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm publication-title: Applied Intelligence. – volume: 1–20 year: 2022 ident: b0115 article-title: Blockchained smart contract pyramid-driven multi-agent autonomous process control for resilient individualised manufacturing towards Industry 5.0 publication-title: International Journal of Production Research. – year: 2021 ident: b0035 article-title: Stochastic multi-objective integrated disassembly-reprocessing-reassembly scheduling via fruit fly optimization algorithm publication-title: Journal of Cleaner Production – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0190 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization. – volume: 16 start-page: 2063 year: 2019 end-page: 2085 ident: b0125 article-title: An integrated approach for remanufacturing job shop scheduling with routing alternatives publication-title: Mathematical Biosciences and Engineering. – volume: 19 start-page: 1277 year: 2022 end-page: 1285 ident: b0205 article-title: Energy-Efficient Robotic Parallel Disassembly Sequence Planning for End-of-Life Products publication-title: IEEE Transactions on Automation Science and Engineering. – year: 2021 ident: b0135 article-title: Minimizing energy consumption in multi-objective two-sided disassembly line balancing problem with complex execution constraints using dual-individual simulated annealing algorithm publication-title: Journal of Cleaner Production – year: 2021 ident: b0160 article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning publication-title: Computers & Industrial Engineering – year: 2021 ident: b0225 article-title: Scheme selection of design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionistic fuzzy numbers and regret theory publication-title: Journal of Cleaner Production – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0020 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation. – volume: 41 start-page: 239 year: 2016 end-page: 255 ident: b0075 article-title: A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly publication-title: Journal of Manufacturing Systems. – volume: 292 start-page: 397 year: 2021 end-page: 422 ident: b0005 article-title: Performance indicators in multiobjective optimization publication-title: European Journal of Operational Research. – volume: 60 start-page: 4049 year: 2022 end-page: 4069 ident: b0150 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: International Journal of Production Research. – volume: 148 start-page: 624 year: 2017 end-page: 641 ident: b0045 article-title: Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems publication-title: Journal of Cleaner Production. – year: 2021 ident: b0250 article-title: Remanufacturability evaluation of end-of-life products considering technology, economy and environment: A review publication-title: Science of The Total Environment – year: 2021 ident: b0110 article-title: A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0 publication-title: Journal of Cleaner Production. – volume: 66 start-page: 211 year: 2023 end-page: 232 ident: b0245 article-title: An energy-efficient multi-objective scheduling for flexible job-shop-type remanufacturing system publication-title: Journal of Manufacturing Systems. – volume: 14 start-page: 474 year: 2019 end-page: 488 ident: b0255 article-title: Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level publication-title: Frontiers of Mechanical Engineering. – volume: 18 start-page: 467 year: 2000 end-page: 483 ident: b0050 article-title: Production planning and control for remanufacturing: Industry practice and research needs publication-title: Journal of Operations Management. – volume: 50 start-page: 3307 year: 2020 end-page: 3317 ident: b0065 article-title: Lexicographic Multiobjective Scatter Search for the Optimization of Sequence-Dependent Selective Disassembly Subject to Multiresource Constraints publication-title: IEEE Transactions on Cybernetics. – volume: 39 start-page: 965 issue: 9–10 year: 2008 ident: 10.1016/j.cie.2023.109419_b0235 article-title: An effective hybrid genetic algorithm for the job shop scheduling problem publication-title: International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-007-1354-8 – volume: 53 start-page: 5755 issue: 19 year: 2015 ident: 10.1016/j.cie.2023.109419_b0145 article-title: A hybrid PSO-GA algorithm for job shop scheduling in machine tool production publication-title: International Journal of Production Research. doi: 10.1080/00207543.2014.994714 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0225 article-title: Scheme selection of design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionistic fuzzy numbers and regret theory publication-title: Journal of Cleaner Production – year: 2021 ident: 10.1016/j.cie.2023.109419_b0110 article-title: A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0 publication-title: Journal of Cleaner Production. – volume: 120 start-page: 266 year: 2018 ident: 10.1016/j.cie.2023.109419_b0230 article-title: Scheduling algorithms for job-shop-type remanufacturing systems with component matching requirement publication-title: Computers & Industrial Engineering. doi: 10.1016/j.cie.2018.04.048 – volume: 53 start-page: 1819 issue: 6 year: 2015 ident: 10.1016/j.cie.2023.109419_b0090 article-title: Scheduling algorithms for remanufacturing systems with parallel flow-shop-type reprocessing lines publication-title: International Journal of Production Research. doi: 10.1080/00207543.2014.962112 – volume: 94 start-page: 1 year: 2016 ident: 10.1016/j.cie.2023.109419_b0070 article-title: Minimizing make-span in 2-stage disassembly flow-shop scheduling problem publication-title: Computers & Industrial Engineering. doi: 10.1016/j.cie.2016.01.015 – year: 2022 ident: 10.1016/j.cie.2023.109419_b0240 article-title: The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm publication-title: Journal of Intelligent Manufacturing – year: 2020 ident: 10.1016/j.cie.2023.109419_b0095 article-title: A crossover operator for improving the efficiency of permutation-based genetic algorithms publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.113381 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0200 article-title: Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D publication-title: Swarm and Evolutionary Computation doi: 10.1016/j.swevo.2021.100858 – volume: 66 start-page: 211 year: 2023 ident: 10.1016/j.cie.2023.109419_b0245 article-title: An energy-efficient multi-objective scheduling for flexible job-shop-type remanufacturing system publication-title: Journal of Manufacturing Systems. doi: 10.1016/j.jmsy.2022.12.008 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0025 article-title: Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem publication-title: Applied Soft Computing – volume: 91 start-page: 3697 issue: 9–12 year: 2017 ident: 10.1016/j.cie.2023.109419_b0085 article-title: Priority scheduling to minimize the total tardiness for remanufacturing systems with flow-shop-type reprocessing lines publication-title: International Journal of Advanced Manufacturing Technology. doi: 10.1007/s00170-017-0057-z – volume: 50 start-page: 182 issue: 1 year: 2020 ident: 10.1016/j.cie.2023.109419_b0120 article-title: ManuChain: Combining Permissioned Blockchain With a Holistic Optimization Model as Bi-Level Intelligence for Smart Manufacturing publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems. doi: 10.1109/TSMC.2019.2930418 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.cie.2023.109419_b0190 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: Journal of Global Optimization. doi: 10.1023/A:1008202821328 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.cie.2023.109419_b0020 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation. doi: 10.1109/4235.996017 – year: 2005 ident: 10.1016/j.cie.2023.109419_b0165 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0135 article-title: Minimizing energy consumption in multi-objective two-sided disassembly line balancing problem with complex execution constraints using dual-individual simulated annealing algorithm publication-title: Journal of Cleaner Production – volume: 41 start-page: 239 year: 2016 ident: 10.1016/j.cie.2023.109419_b0075 article-title: A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly publication-title: Journal of Manufacturing Systems. doi: 10.1016/j.jmsy.2016.09.008 – volume: 50 start-page: 3770 issue: 10 year: 2018 ident: 10.1016/j.cie.2023.109419_b0175 article-title: An MCDM-Based Multiobjective General Variable Neighborhood Search Approach for Disassembly Line Balancing Problem publication-title: IEEE Transactions on Systems Man Cybernetics-Systems. – volume: 19 start-page: 1277 issue: 2 year: 2022 ident: 10.1016/j.cie.2023.109419_b0205 article-title: Energy-Efficient Robotic Parallel Disassembly Sequence Planning for End-of-Life Products publication-title: IEEE Transactions on Automation Science and Engineering. doi: 10.1109/TASE.2021.3061506 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0210 article-title: Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm publication-title: Journal of Intelligent Manufacturing doi: 10.1007/978-981-33-4244-6 – volume: 57 start-page: 94 year: 2020 ident: 10.1016/j.cie.2023.109419_b0185 article-title: A new environment-aware scheduling method for remanufacturing system with non-dedicated reprocessing lines using improved flower pollination algorithm publication-title: Journal of Manufacturing Systems. doi: 10.1016/j.jmsy.2020.08.006 – volume: 184 start-page: 168 year: 2017 ident: 10.1016/j.cie.2023.109419_b0170 article-title: Simultaneous reassembly and procurement planning in assemble-to-order remanufacturing systems publication-title: International Journal of Production Economics. doi: 10.1016/j.ijpe.2016.12.009 – volume: 18 start-page: 467 issue: 4 year: 2000 ident: 10.1016/j.cie.2023.109419_b0050 article-title: Production planning and control for remanufacturing: Industry practice and research needs publication-title: Journal of Operations Management. doi: 10.1016/S0272-6963(00)00034-6 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0180 article-title: A new bifuzzy optimization method for remanufacturing scheduling using extended discrete particle swarm optimization algorithm publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107219 – volume: 15 start-page: 2456 issue: 4 year: 2019 ident: 10.1016/j.cie.2023.109419_b0195 article-title: Modeling and Planning for Dual-Objective Selective Disassembly Using AND/OR Graph and Discrete Artificial Bee Colony publication-title: IEEE Transactions on Industrial Informatics. doi: 10.1109/TII.2018.2884845 – year: 2023 ident: 10.1016/j.cie.2023.109419_b0215 article-title: A hybrid genetic algorithm with multiple decoding methods for energy-aware remanufacturing system scheduling problem publication-title: Robotics and Computer-Integrated Manufacturing. https:// doi: 10.1016/j.rcim.2022.102509 – volume: 50 start-page: 3307 issue: 7 year: 2020 ident: 10.1016/j.cie.2023.109419_b0065 article-title: Lexicographic Multiobjective Scatter Search for the Optimization of Sequence-Dependent Selective Disassembly Subject to Multiresource Constraints publication-title: IEEE Transactions on Cybernetics. doi: 10.1109/TCYB.2019.2901834 – volume: 292 start-page: 397 issue: 2 year: 2021 ident: 10.1016/j.cie.2023.109419_b0005 article-title: Performance indicators in multiobjective optimization publication-title: European Journal of Operational Research. doi: 10.1016/j.ejor.2020.11.016 – volume: 39 start-page: 140 issue: 1 year: 2019 ident: 10.1016/j.cie.2023.109419_b0060 article-title: A hybrid artificial fish swam algorithm for disassembly sequence planning considering setup time publication-title: Assembly Automation. doi: 10.1108/AA-12-2017-180 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0130 article-title: Modelling and solving profit-oriented U-shaped partial disassembly line balancing problem publication-title: Expert Systems with Applications – volume: 63 start-page: 143 year: 2022 ident: 10.1016/j.cie.2023.109419_b0100 article-title: Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services publication-title: Journal of Manufacturing Systems. doi: 10.1016/j.jmsy.2022.03.008 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0035 article-title: Stochastic multi-objective integrated disassembly-reprocessing-reassembly scheduling via fruit fly optimization algorithm publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.123364 – volume: 60 start-page: 4049 issue: 13 year: 2022 ident: 10.1016/j.cie.2023.109419_b0150 article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop publication-title: International Journal of Production Research. doi: 10.1080/00207543.2022.2058432 – volume: 60 start-page: 2884 issue: 9 year: 2021 ident: 10.1016/j.cie.2023.109419_b0055 article-title: Multi-objective optimisation of stochastic hybrid production line balancing including assembly and disassembly tasks publication-title: International Journal of Production Research. doi: 10.1080/00207543.2021.1905902 – volume: 32 start-page: 230 issue: 2 year: 2006 ident: 10.1016/j.cie.2023.109419_b0015 article-title: Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm publication-title: Computers & Geosciences. doi: 10.1016/j.cageo.2005.06.008 – volume: 234 start-page: 767 year: 2019 ident: 10.1016/j.cie.2023.109419_b0105 article-title: Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing publication-title: Journal of Cleaner Production. doi: 10.1016/j.jclepro.2019.06.265 – volume: 14 start-page: 474 issue: 4 year: 2019 ident: 10.1016/j.cie.2023.109419_b0255 article-title: Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level publication-title: Frontiers of Mechanical Engineering. doi: 10.1007/s11465-019-0560-z – year: 2021 ident: 10.1016/j.cie.2023.109419_b0220 article-title: Modeling and scheduling for remanufacturing systems with disassembly, reprocessing, and reassembly considering total energy consumption publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-021-17292-x – year: 2019 ident: 10.1016/j.cie.2023.109419_b0080 article-title: A review of emerging industry 4.0 technologies in remanufacturing publication-title: Journal of Cleaner Production. doi: 10.1016/j.jclepro.2019.117805 – year: 2022 ident: 10.1016/j.cie.2023.109419_b0155 article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop publication-title: Expert Systems with Applications – volume: 50 start-page: 965 issue: 6 year: 2017 ident: 10.1016/j.cie.2023.109419_b0040 article-title: Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: A case study publication-title: Engineering Optimization. doi: 10.1080/0305215X.2017.1391240 – volume: 148 start-page: 624 year: 2017 ident: 10.1016/j.cie.2023.109419_b0045 article-title: Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems publication-title: Journal of Cleaner Production. doi: 10.1016/j.jclepro.2017.01.166 – volume: 16 start-page: 2063 issue: 4 year: 2019 ident: 10.1016/j.cie.2023.109419_b0125 article-title: An integrated approach for remanufacturing job shop scheduling with routing alternatives publication-title: Mathematical Biosciences and Engineering. doi: 10.3934/mbe.2019101 – volume: 169 year: 2022 ident: 10.1016/j.cie.2023.109419_b0030 article-title: Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system publication-title: Computers & Industrial Engineering. doi: 10.1016/j.cie.2022.108146 – volume: 1–20 year: 2022 ident: 10.1016/j.cie.2023.109419_b0115 article-title: Blockchained smart contract pyramid-driven multi-agent autonomous process control for resilient individualised manufacturing towards Industry 5.0 publication-title: International Journal of Production Research. – year: 2021 ident: 10.1016/j.cie.2023.109419_b0160 article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2021.107489 – volume: 49 start-page: 1903 issue: 5 year: 2019 ident: 10.1016/j.cie.2023.109419_b0010 article-title: A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm publication-title: Applied Intelligence. doi: 10.1007/s10489-018-1343-7 – year: 2021 ident: 10.1016/j.cie.2023.109419_b0250 article-title: Remanufacturability evaluation of end-of-life products considering technology, economy and environment: A review publication-title: Science of The Total Environment – volume: 269 start-page: 244 issue: 1 year: 2018 ident: 10.1016/j.cie.2023.109419_b0140 article-title: Capacitated disassembly scheduling under stochastic yield and demand publication-title: European Journal of Operational Research. doi: 10.1016/j.ejor.2017.08.032 |
| SSID | ssj0004591 |
| Score | 2.4600954 |
| Snippet | •Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109419 |
| SubjectTerms | Component commonality Energy consumption Improved multi-objective genetic algorithm Remanufacturing system Scheduling |
| Title | Integrated scheduling for remanufacturing system considering component commonality using improved multi-objective genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.cie.2023.109419 |
| Volume | 182 |
| WOSCitedRecordID | wos001042629000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0550 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004591 issn: 0360-8352 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcChQQ5aU9cAJt5ccm9h4rKKKAKiSKiLhY9nrcOkqcKImr3vsn-LnMvrwmKgiQkCXL2Xhty_N5dnZ25htCXuBMJyxxYxAmMeOSj1mOMGBFLMoxRGU4Ak2Z_zE5OUknE_FpMPjucmEuZknTpJeXYvlfRY1tKGyVOvsX4u4uig14jELHPYod938k-GNHAFG-wpkrjiQzFyy5gnnetCqVweQmGhZnFXiua3ba9NvlolHxAXg0d1Z6qx0KtfY_4GV1ECJbFFOjLFUVZtC8r7OzxarenM_7Fq8rG7HWIKt9pRDwTIhdEFBr1oHaDrHfFq1tqcCf96Y1SyX1We4bv1rP94e8XrZ9Z0YUd6F01sPmsmx8SJPJ7AqYshTNmGUUdZoIFowMaa3X5NG1o4JxUEwPUFseqLsqDi1uNfXPZNuf1b20UaqYyHg8vkF2omQk0iHZOTw-mrzvMdGbaozu2dyKuY4d3LrR9TZPz445vUt27QSEHhrg3CMDaPbIHTsZoVbVr_fI7R5T5X1y5VFFPaoooopuoYoaVNEeqmiHKtpDFdWoog5VdAtV1KKKdqh6QL68PTp9_Y7Z-h1MRiLZsBgCNYHjFRcqHHRUxPjp80JUsspjgKCoUkgq3ESUBBWPS472KeCfAl9qGMr4IRk2-HSPCE2LQqQpl8Ah52kJ6qcco9HApcARCfZJ4N5wJi25vaqxMstcFOMU2yFTQsmMUPbJy67L0jC7_O5k7sSWWdPUmJwZYuzX3R7_W7cn5Jb_OJ6S4WbVwjNyU15s6vXquUXiD-bIuzM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+scheduling+for+remanufacturing+system+considering+component+commonality+using+improved+multi-objective+genetic+algorithm&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Guo%2C+Jun&rft.au=Zou%2C+Junfeng&rft.au=Du%2C+Baigang&rft.au=Wang%2C+Kaipu&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=182&rft_id=info:doi/10.1016%2Fj.cie.2023.109419&rft.externalDocID=S0360835223004436 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon |