Integrated scheduling for remanufacturing system considering component commonality using improved multi-objective genetic algorithm

•Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic strategies to obtain high-quality solutions for above problem.•Comparative experiments are executed on several test instances to verify the perfo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & industrial engineering Ročník 182; s. 109419
Hlavní autoři: Guo, Jun, Zou, Junfeng, Du, Baigang, Wang, Kaipu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.08.2023
Témata:
ISSN:0360-8352, 1879-0550
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic strategies to obtain high-quality solutions for above problem.•Comparative experiments are executed on several test instances to verify the performance of IMOGA. The existing researches on scheduling for remanufacturing system explicitly or implicitly subjects to the component matching requirements while ignoring the repaired component commonality, which is inconsistent with reality. Thus, this paper proposes a novel integrated scheduling method for remanufacturing system with disassembly-reprocessing-reassembly considering component commonality, where components obtained by reprocessing no longer only be used to reassemble their original product, but also be used to reassemble other remanufacturing products. And a mathematic model is formulated to simultaneously minimize the completion time and total energy consumption. Then, an improved multi-objective genetic algorithm (IMOGA) with a new double-layer representation scheme is developed to handle the considered problem. In the IMOGA, a left-shift strategy is developed to utilize workstation idle time and a component-relink strategy is designed to solve the reassembly decision with component commonality. In addition, the crossover and mutation operators based on grouping strategy are designed to enhance algorithm search ability. After, a local search with two heuristic strategies is proposed to further improve the quality of solutions in the elite set. Finally, a series of comparative experiments are carried out and the results show that IMOGA can tackle this scheduling problem effectively.
AbstractList •Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic strategies to obtain high-quality solutions for above problem.•Comparative experiments are executed on several test instances to verify the performance of IMOGA. The existing researches on scheduling for remanufacturing system explicitly or implicitly subjects to the component matching requirements while ignoring the repaired component commonality, which is inconsistent with reality. Thus, this paper proposes a novel integrated scheduling method for remanufacturing system with disassembly-reprocessing-reassembly considering component commonality, where components obtained by reprocessing no longer only be used to reassemble their original product, but also be used to reassemble other remanufacturing products. And a mathematic model is formulated to simultaneously minimize the completion time and total energy consumption. Then, an improved multi-objective genetic algorithm (IMOGA) with a new double-layer representation scheme is developed to handle the considered problem. In the IMOGA, a left-shift strategy is developed to utilize workstation idle time and a component-relink strategy is designed to solve the reassembly decision with component commonality. In addition, the crossover and mutation operators based on grouping strategy are designed to enhance algorithm search ability. After, a local search with two heuristic strategies is proposed to further improve the quality of solutions in the elite set. Finally, a series of comparative experiments are carried out and the results show that IMOGA can tackle this scheduling problem effectively.
ArticleNumber 109419
Author Wang, Kaipu
Du, Baigang
Guo, Jun
Zou, Junfeng
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0003-3469-4955
  surname: Guo
  fullname: Guo, Jun
  email: junguo@whut.edu.cn
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 2
  givenname: Junfeng
  orcidid: 0000-0003-1279-1594
  surname: Zou
  fullname: Zou, Junfeng
  email: zea1021@163.com
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 3
  givenname: Baigang
  surname: Du
  fullname: Du, Baigang
  email: dbg767@163.com
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
– sequence: 4
  givenname: Kaipu
  surname: Wang
  fullname: Wang, Kaipu
  email: wangkaipu@whut.edu.cn
  organization: School of Mechanical and Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China
BookMark eNp9kM9OwzAMxiM0JMbgAbj1BTqSJl0bcUITfyZN4gLnKE2dLlObTEk6aWdenJRx4jD5YOezf1b83aKZdRYQeiB4STBZPe6XysCywAVNb84Iv0JzUlc8x2WJZ2iO6QrnNS2LG3Qbwh5jzEpO5uh7YyN0XkZos6B20I69sV2mnc88DNKOWqo4-kkLpxBhyJSzwbTwKyk3HNI_bJyqwVnZm3jKxjD1zHDw7pjWDmMfTe6aPahojpB1YCEalcm-c97E3XCHrrXsA9z_5QX6en35XL_n24-3zfp5m6uCVzGngHFdF0wz3mjWlg1tSckarpWWFAA3uoZKp-BFhTWjLcM1gdTk6XZCFF2g6rxXeReCBy2UiTIaZ6OXphcEi8lLsU86iMlLcfYykeQfefBmkP50kXk6M5BOOhrwIqQRq6A1PjkhWmcu0D-eGpOs
CitedBy_id crossref_primary_10_1016_j_cie_2025_111099
crossref_primary_10_1007_s40747_025_01907_8
crossref_primary_10_1016_j_cie_2023_109817
crossref_primary_10_1080_0305215X_2023_2296538
crossref_primary_10_1016_j_jclepro_2024_142916
crossref_primary_10_1016_j_trc_2025_105288
crossref_primary_10_1016_j_compeleceng_2024_109813
crossref_primary_10_1155_2024_8416933
crossref_primary_10_3390_machines13090762
Cites_doi 10.1007/s00170-007-1354-8
10.1080/00207543.2014.994714
10.1016/j.cie.2018.04.048
10.1080/00207543.2014.962112
10.1016/j.cie.2016.01.015
10.1016/j.eswa.2020.113381
10.1016/j.swevo.2021.100858
10.1016/j.jmsy.2022.12.008
10.1007/s00170-017-0057-z
10.1109/TSMC.2019.2930418
10.1023/A:1008202821328
10.1109/4235.996017
10.1016/j.jmsy.2016.09.008
10.1109/TASE.2021.3061506
10.1007/978-981-33-4244-6
10.1016/j.jmsy.2020.08.006
10.1016/j.ijpe.2016.12.009
10.1016/S0272-6963(00)00034-6
10.1016/j.cie.2021.107219
10.1109/TII.2018.2884845
10.1016/j.rcim.2022.102509
10.1109/TCYB.2019.2901834
10.1016/j.ejor.2020.11.016
10.1108/AA-12-2017-180
10.1016/j.jmsy.2022.03.008
10.1016/j.jclepro.2020.123364
10.1080/00207543.2022.2058432
10.1080/00207543.2021.1905902
10.1016/j.cageo.2005.06.008
10.1016/j.jclepro.2019.06.265
10.1007/s11465-019-0560-z
10.1007/s11356-021-17292-x
10.1016/j.jclepro.2019.117805
10.1080/0305215X.2017.1391240
10.1016/j.jclepro.2017.01.166
10.3934/mbe.2019101
10.1016/j.cie.2022.108146
10.1016/j.cie.2021.107489
10.1007/s10489-018-1343-7
10.1016/j.ejor.2017.08.032
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cie.2023.109419
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-0550
ExternalDocumentID 10_1016_j_cie_2023_109419
S0360835223004436
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFWJ
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
ADRHT
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LX9
LY1
LY7
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSW
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c297t-3e008824f49bf4d5b3d154b9fcfa3ee0bf8e7f7f79270f43d4081ecfa936011c3
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001042629000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-8352
IngestDate Sat Nov 29 07:22:41 EST 2025
Tue Nov 18 21:09:38 EST 2025
Fri Feb 23 02:36:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy consumption
Component commonality
Scheduling
Remanufacturing system
Improved multi-objective genetic algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c297t-3e008824f49bf4d5b3d154b9fcfa3ee0bf8e7f7f79270f43d4081ecfa936011c3
ORCID 0000-0003-1279-1594
0000-0003-3469-4955
ParticipantIDs crossref_citationtrail_10_1016_j_cie_2023_109419
crossref_primary_10_1016_j_cie_2023_109419
elsevier_sciencedirect_doi_10_1016_j_cie_2023_109419
PublicationCentury 2000
PublicationDate August 2023
2023-08-00
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: August 2023
PublicationDecade 2020
PublicationTitle Computers & industrial engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Li, Li, Tang, Yang (b0125) 2019; 16
Lu, Liu, Zhang, Yin (b0155) 2022
Chaouch, Driss, Ghedira (b0010) 2019; 49
Li, Janardhanan (b0130) 2021
Leng, Ruan, Song, Liu, Fu, Ding, Chen (b0110) 2021
Leng, Yan, Liu, Xu, Zhao, Shi, Chen (b0120) 2020; 50
Shi, Zhang, Zhang, Wang, Lin, Feng (b0185) 2020; 57
Koohestani (b0095) 2020
Kim, Yu, Lee (b0090) 2015; 53
Liu, Piplani, Toro (b0150) 2022; 60
Liang, Guo, Du, Li, Guo, Yang, Pang (b0135) 2021
Guo, Pu, Du, Li (b0055) 2021; 60
Liu, Hu, Hu, Zhao, Wang (b0145) 2015; 53
Fu, Zhou, Guo, Qi (b0035) 2021
Liu, Zhang (b0140) 2018; 269
Zhang, Tang, Zhang, Jiang, Cai (b0250) 2021
Wang, Tian, Zhang, Jabarullah, Li, Fathollahi-Fard, Li (b0225) 2021
Zhang, Rao, Li (b0235) 2008; 39
Oh, Behdad (b0170) 2017; 184
Guo, Zhou, Liu, Qi (b0065) 2020; 50
Dong, Ye (b0030) 2022; 169
Guide (b0050) 2000; 18
Zhang, Zheng, Ahmad (b0240) 2022
Jiang, Yi, Chen, Zhu (b0075) 2016; 41
Zhao, Peng, Li, Lv, Li, Zhang (b0255) 2019; 14
Audet, Bigeon, Cartier, Le Digabel, Salomon (b0005) 2021; 292
Deb, Pratap, Agarwal, Meyarivan (b0020) 2002; 6
Deng, Xu, Song, Zhao (b0025) 2021
Yu, Lee (b0230) 2018; 120
Wang, Tian, Zhang, Li, Zhang (b0215) 2023
Tian, Ren, Feng, Zhou, Zhang, Tan (b0195) 2019; 15
Wang, Tian, Yuan, Pham (b0210) 2021
Wang, Gao, Li, Li (b0205) 2022; 19
Kerin, Pham (b0080) 2019
Guo, Zhong, Li, Du, Guo (b0060) 2019; 39
Gao, Wang, Luo, Jiang, Sadollah, Pan (b0040) 2017; 50
Giglio, Paolucci, Roshani (b0045) 2017; 148
Storn, Price (b0190) 1997; 11
Zhang, Zheng, Ahmad (b0245) 2023; 66
Hojati (b0070) 2016; 94
Chen, Xia, Liu, Feng (b0015) 2006; 32
Wang, Li, Gao, Li (b0200) 2021
Leng, Jiang, Xu, Liu, Zhao, Bian, Shi (b0105) 2019; 234
Shi, Zhang, Zhang, Chen (b0180) 2021
Leng, Sha, Lin, Jing, Liu, Chen (b0115) 2022; 1–20
Kim, Zhou, Lee (b0085) 2017; 91
Leng, Chen, Sha, Ye, Liu, Chen (b0100) 2022; 63
Luo, Zhang, Fan (b0160) 2021
Montgomery (b0165) 2005
Wang, Tian, Zhang, Xu, Miao (b0220) 2021
Ren, Zhang, Zhao, Triebe, Meng (b0175) 2018; 50
Kim (10.1016/j.cie.2023.109419_b0085) 2017; 91
Kim (10.1016/j.cie.2023.109419_b0090) 2015; 53
Storn (10.1016/j.cie.2023.109419_b0190) 1997; 11
Wang (10.1016/j.cie.2023.109419_b0205) 2022; 19
Hojati (10.1016/j.cie.2023.109419_b0070) 2016; 94
Luo (10.1016/j.cie.2023.109419_b0160) 2021
Shi (10.1016/j.cie.2023.109419_b0180) 2021
Li (10.1016/j.cie.2023.109419_b0125) 2019; 16
Wang (10.1016/j.cie.2023.109419_b0225) 2021
Chen (10.1016/j.cie.2023.109419_b0015) 2006; 32
Zhang (10.1016/j.cie.2023.109419_b0240) 2022
Liang (10.1016/j.cie.2023.109419_b0135) 2021
Audet (10.1016/j.cie.2023.109419_b0005) 2021; 292
Leng (10.1016/j.cie.2023.109419_b0100) 2022; 63
Lu (10.1016/j.cie.2023.109419_b0155) 2022
Fu (10.1016/j.cie.2023.109419_b0035) 2021
Liu (10.1016/j.cie.2023.109419_b0150) 2022; 60
Yu (10.1016/j.cie.2023.109419_b0230) 2018; 120
Dong (10.1016/j.cie.2023.109419_b0030) 2022; 169
Zhang (10.1016/j.cie.2023.109419_b0235) 2008; 39
Guo (10.1016/j.cie.2023.109419_b0055) 2021; 60
Wang (10.1016/j.cie.2023.109419_b0210) 2021
Li (10.1016/j.cie.2023.109419_b0130) 2021
Kerin (10.1016/j.cie.2023.109419_b0080) 2019
Gao (10.1016/j.cie.2023.109419_b0040) 2017; 50
Leng (10.1016/j.cie.2023.109419_b0115) 2022; 1–20
Ren (10.1016/j.cie.2023.109419_b0175) 2018; 50
Leng (10.1016/j.cie.2023.109419_b0110) 2021
Koohestani (10.1016/j.cie.2023.109419_b0095) 2020
Jiang (10.1016/j.cie.2023.109419_b0075) 2016; 41
Oh (10.1016/j.cie.2023.109419_b0170) 2017; 184
Guo (10.1016/j.cie.2023.109419_b0060) 2019; 39
Deng (10.1016/j.cie.2023.109419_b0025) 2021
Guo (10.1016/j.cie.2023.109419_b0065) 2020; 50
Guide (10.1016/j.cie.2023.109419_b0050) 2000; 18
Liu (10.1016/j.cie.2023.109419_b0145) 2015; 53
Giglio (10.1016/j.cie.2023.109419_b0045) 2017; 148
Wang (10.1016/j.cie.2023.109419_b0200) 2021
Shi (10.1016/j.cie.2023.109419_b0185) 2020; 57
Leng (10.1016/j.cie.2023.109419_b0120) 2020; 50
Wang (10.1016/j.cie.2023.109419_b0215) 2023
Liu (10.1016/j.cie.2023.109419_b0140) 2018; 269
Zhao (10.1016/j.cie.2023.109419_b0255) 2019; 14
Chaouch (10.1016/j.cie.2023.109419_b0010) 2019; 49
Zhang (10.1016/j.cie.2023.109419_b0250) 2021
Tian (10.1016/j.cie.2023.109419_b0195) 2019; 15
Montgomery (10.1016/j.cie.2023.109419_b0165) 2005
Zhang (10.1016/j.cie.2023.109419_b0245) 2023; 66
Leng (10.1016/j.cie.2023.109419_b0105) 2019; 234
Wang (10.1016/j.cie.2023.109419_b0220) 2021
Deb (10.1016/j.cie.2023.109419_b0020) 2002; 6
References_xml – volume: 53
  start-page: 1819
  year: 2015
  end-page: 1831
  ident: b0090
  article-title: Scheduling algorithms for remanufacturing systems with parallel flow-shop-type reprocessing lines
  publication-title: International Journal of Production Research.
– volume: 60
  start-page: 2884
  year: 2021
  end-page: 2900
  ident: b0055
  article-title: Multi-objective optimisation of stochastic hybrid production line balancing including assembly and disassembly tasks
  publication-title: International Journal of Production Research.
– volume: 50
  start-page: 965
  year: 2017
  end-page: 981
  ident: b0040
  article-title: Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: A case study
  publication-title: Engineering Optimization.
– volume: 91
  start-page: 3697
  year: 2017
  end-page: 3708
  ident: b0085
  article-title: Priority scheduling to minimize the total tardiness for remanufacturing systems with flow-shop-type reprocessing lines
  publication-title: International Journal of Advanced Manufacturing Technology.
– volume: 234
  start-page: 767
  year: 2019
  end-page: 778
  ident: b0105
  article-title: Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing
  publication-title: Journal of Cleaner Production.
– volume: 32
  start-page: 230
  year: 2006
  end-page: 239
  ident: b0015
  article-title: Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
  publication-title: Computers & Geosciences.
– year: 2023
  ident: b0215
  article-title: A hybrid genetic algorithm with multiple decoding methods for energy-aware remanufacturing system scheduling problem
  publication-title: Robotics and Computer-Integrated Manufacturing. https://
– year: 2022
  ident: b0155
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert Systems with Applications
– volume: 39
  start-page: 965
  year: 2008
  end-page: 974
  ident: b0235
  article-title: An effective hybrid genetic algorithm for the job shop scheduling problem
  publication-title: International Journal of Advanced Manufacturing Technology.
– volume: 169
  year: 2022
  ident: b0030
  article-title: Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system
  publication-title: Computers & Industrial Engineering.
– year: 2021
  ident: b0130
  article-title: Modelling and solving profit-oriented U-shaped partial disassembly line balancing problem
  publication-title: Expert Systems with Applications
– volume: 94
  start-page: 1
  year: 2016
  end-page: 5
  ident: b0070
  article-title: Minimizing make-span in 2-stage disassembly flow-shop scheduling problem
  publication-title: Computers & Industrial Engineering.
– year: 2021
  ident: b0025
  article-title: Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem
  publication-title: Applied Soft Computing
– volume: 63
  start-page: 143
  year: 2022
  end-page: 161
  ident: b0100
  article-title: Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services
  publication-title: Journal of Manufacturing Systems.
– volume: 53
  start-page: 5755
  year: 2015
  end-page: 5781
  ident: b0145
  article-title: A hybrid PSO-GA algorithm for job shop scheduling in machine tool production
  publication-title: International Journal of Production Research.
– year: 2021
  ident: b0180
  article-title: A new bifuzzy optimization method for remanufacturing scheduling using extended discrete particle swarm optimization algorithm
  publication-title: Computers & Industrial Engineering
– volume: 50
  start-page: 182
  year: 2020
  end-page: 192
  ident: b0120
  article-title: ManuChain: Combining Permissioned Blockchain With a Holistic Optimization Model as Bi-Level Intelligence for Smart Manufacturing
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems.
– year: 2021
  ident: b0220
  article-title: Modeling and scheduling for remanufacturing systems with disassembly, reprocessing, and reassembly considering total energy consumption
  publication-title: Environmental Science and Pollution Research
– volume: 57
  start-page: 94
  year: 2020
  end-page: 108
  ident: b0185
  article-title: A new environment-aware scheduling method for remanufacturing system with non-dedicated reprocessing lines using improved flower pollination algorithm
  publication-title: Journal of Manufacturing Systems.
– year: 2021
  ident: b0210
  article-title: Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm
  publication-title: Journal of Intelligent Manufacturing
– year: 2021
  ident: b0200
  article-title: Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D
  publication-title: Swarm and Evolutionary Computation
– year: 2019
  ident: b0080
  article-title: A review of emerging industry 4.0 technologies in remanufacturing
  publication-title: Journal of Cleaner Production.
– volume: 120
  start-page: 266
  year: 2018
  end-page: 278
  ident: b0230
  article-title: Scheduling algorithms for job-shop-type remanufacturing systems with component matching requirement
  publication-title: Computers & Industrial Engineering.
– year: 2020
  ident: b0095
  article-title: A crossover operator for improving the efficiency of permutation-based genetic algorithms
  publication-title: Expert Systems with Applications
– year: 2005
  ident: b0165
  article-title: Design and Analysis of Experiments
– year: 2022
  ident: b0240
  article-title: The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm
  publication-title: Journal of Intelligent Manufacturing
– volume: 39
  start-page: 140
  year: 2019
  end-page: 153
  ident: b0060
  article-title: A hybrid artificial fish swam algorithm for disassembly sequence planning considering setup time
  publication-title: Assembly Automation.
– volume: 184
  start-page: 168
  year: 2017
  end-page: 178
  ident: b0170
  article-title: Simultaneous reassembly and procurement planning in assemble-to-order remanufacturing systems
  publication-title: International Journal of Production Economics.
– volume: 50
  start-page: 3770
  year: 2018
  end-page: 3783
  ident: b0175
  article-title: An MCDM-Based Multiobjective General Variable Neighborhood Search Approach for Disassembly Line Balancing Problem
  publication-title: IEEE Transactions on Systems Man Cybernetics-Systems.
– volume: 269
  start-page: 244
  year: 2018
  end-page: 257
  ident: b0140
  article-title: Capacitated disassembly scheduling under stochastic yield and demand
  publication-title: European Journal of Operational Research.
– volume: 15
  start-page: 2456
  year: 2019
  end-page: 2468
  ident: b0195
  article-title: Modeling and Planning for Dual-Objective Selective Disassembly Using AND/OR Graph and Discrete Artificial Bee Colony
  publication-title: IEEE Transactions on Industrial Informatics.
– volume: 49
  start-page: 1903
  year: 2019
  end-page: 1924
  ident: b0010
  article-title: A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm
  publication-title: Applied Intelligence.
– volume: 1–20
  year: 2022
  ident: b0115
  article-title: Blockchained smart contract pyramid-driven multi-agent autonomous process control for resilient individualised manufacturing towards Industry 5.0
  publication-title: International Journal of Production Research.
– year: 2021
  ident: b0035
  article-title: Stochastic multi-objective integrated disassembly-reprocessing-reassembly scheduling via fruit fly optimization algorithm
  publication-title: Journal of Cleaner Production
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0190
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization.
– volume: 16
  start-page: 2063
  year: 2019
  end-page: 2085
  ident: b0125
  article-title: An integrated approach for remanufacturing job shop scheduling with routing alternatives
  publication-title: Mathematical Biosciences and Engineering.
– volume: 19
  start-page: 1277
  year: 2022
  end-page: 1285
  ident: b0205
  article-title: Energy-Efficient Robotic Parallel Disassembly Sequence Planning for End-of-Life Products
  publication-title: IEEE Transactions on Automation Science and Engineering.
– year: 2021
  ident: b0135
  article-title: Minimizing energy consumption in multi-objective two-sided disassembly line balancing problem with complex execution constraints using dual-individual simulated annealing algorithm
  publication-title: Journal of Cleaner Production
– year: 2021
  ident: b0160
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Computers & Industrial Engineering
– year: 2021
  ident: b0225
  article-title: Scheme selection of design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionistic fuzzy numbers and regret theory
  publication-title: Journal of Cleaner Production
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0020
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation.
– volume: 41
  start-page: 239
  year: 2016
  end-page: 255
  ident: b0075
  article-title: A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly
  publication-title: Journal of Manufacturing Systems.
– volume: 292
  start-page: 397
  year: 2021
  end-page: 422
  ident: b0005
  article-title: Performance indicators in multiobjective optimization
  publication-title: European Journal of Operational Research.
– volume: 60
  start-page: 4049
  year: 2022
  end-page: 4069
  ident: b0150
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research.
– volume: 148
  start-page: 624
  year: 2017
  end-page: 641
  ident: b0045
  article-title: Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems
  publication-title: Journal of Cleaner Production.
– year: 2021
  ident: b0250
  article-title: Remanufacturability evaluation of end-of-life products considering technology, economy and environment: A review
  publication-title: Science of The Total Environment
– year: 2021
  ident: b0110
  article-title: A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0
  publication-title: Journal of Cleaner Production.
– volume: 66
  start-page: 211
  year: 2023
  end-page: 232
  ident: b0245
  article-title: An energy-efficient multi-objective scheduling for flexible job-shop-type remanufacturing system
  publication-title: Journal of Manufacturing Systems.
– volume: 14
  start-page: 474
  year: 2019
  end-page: 488
  ident: b0255
  article-title: Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level
  publication-title: Frontiers of Mechanical Engineering.
– volume: 18
  start-page: 467
  year: 2000
  end-page: 483
  ident: b0050
  article-title: Production planning and control for remanufacturing: Industry practice and research needs
  publication-title: Journal of Operations Management.
– volume: 50
  start-page: 3307
  year: 2020
  end-page: 3317
  ident: b0065
  article-title: Lexicographic Multiobjective Scatter Search for the Optimization of Sequence-Dependent Selective Disassembly Subject to Multiresource Constraints
  publication-title: IEEE Transactions on Cybernetics.
– volume: 39
  start-page: 965
  issue: 9–10
  year: 2008
  ident: 10.1016/j.cie.2023.109419_b0235
  article-title: An effective hybrid genetic algorithm for the job shop scheduling problem
  publication-title: International Journal of Advanced Manufacturing Technology.
  doi: 10.1007/s00170-007-1354-8
– volume: 53
  start-page: 5755
  issue: 19
  year: 2015
  ident: 10.1016/j.cie.2023.109419_b0145
  article-title: A hybrid PSO-GA algorithm for job shop scheduling in machine tool production
  publication-title: International Journal of Production Research.
  doi: 10.1080/00207543.2014.994714
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0225
  article-title: Scheme selection of design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionistic fuzzy numbers and regret theory
  publication-title: Journal of Cleaner Production
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0110
  article-title: A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0
  publication-title: Journal of Cleaner Production.
– volume: 120
  start-page: 266
  year: 2018
  ident: 10.1016/j.cie.2023.109419_b0230
  article-title: Scheduling algorithms for job-shop-type remanufacturing systems with component matching requirement
  publication-title: Computers & Industrial Engineering.
  doi: 10.1016/j.cie.2018.04.048
– volume: 53
  start-page: 1819
  issue: 6
  year: 2015
  ident: 10.1016/j.cie.2023.109419_b0090
  article-title: Scheduling algorithms for remanufacturing systems with parallel flow-shop-type reprocessing lines
  publication-title: International Journal of Production Research.
  doi: 10.1080/00207543.2014.962112
– volume: 94
  start-page: 1
  year: 2016
  ident: 10.1016/j.cie.2023.109419_b0070
  article-title: Minimizing make-span in 2-stage disassembly flow-shop scheduling problem
  publication-title: Computers & Industrial Engineering.
  doi: 10.1016/j.cie.2016.01.015
– year: 2022
  ident: 10.1016/j.cie.2023.109419_b0240
  article-title: The integrated process planning and scheduling of flexible job-shop-type remanufacturing systems using improved artificial bee colony algorithm
  publication-title: Journal of Intelligent Manufacturing
– year: 2020
  ident: 10.1016/j.cie.2023.109419_b0095
  article-title: A crossover operator for improving the efficiency of permutation-based genetic algorithms
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2020.113381
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0200
  article-title: Energy-efficient distributed heterogeneous welding flow shop scheduling problem using a modified MOEA/D
  publication-title: Swarm and Evolutionary Computation
  doi: 10.1016/j.swevo.2021.100858
– volume: 66
  start-page: 211
  year: 2023
  ident: 10.1016/j.cie.2023.109419_b0245
  article-title: An energy-efficient multi-objective scheduling for flexible job-shop-type remanufacturing system
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2022.12.008
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0025
  article-title: Differential evolution algorithm with wavelet basis function and optimal mutation strategy for complex optimization problem
  publication-title: Applied Soft Computing
– volume: 91
  start-page: 3697
  issue: 9–12
  year: 2017
  ident: 10.1016/j.cie.2023.109419_b0085
  article-title: Priority scheduling to minimize the total tardiness for remanufacturing systems with flow-shop-type reprocessing lines
  publication-title: International Journal of Advanced Manufacturing Technology.
  doi: 10.1007/s00170-017-0057-z
– volume: 50
  start-page: 182
  issue: 1
  year: 2020
  ident: 10.1016/j.cie.2023.109419_b0120
  article-title: ManuChain: Combining Permissioned Blockchain With a Holistic Optimization Model as Bi-Level Intelligence for Smart Manufacturing
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics: Systems.
  doi: 10.1109/TSMC.2019.2930418
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.cie.2023.109419_b0190
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: Journal of Global Optimization.
  doi: 10.1023/A:1008202821328
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  ident: 10.1016/j.cie.2023.109419_b0020
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation.
  doi: 10.1109/4235.996017
– year: 2005
  ident: 10.1016/j.cie.2023.109419_b0165
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0135
  article-title: Minimizing energy consumption in multi-objective two-sided disassembly line balancing problem with complex execution constraints using dual-individual simulated annealing algorithm
  publication-title: Journal of Cleaner Production
– volume: 41
  start-page: 239
  year: 2016
  ident: 10.1016/j.cie.2023.109419_b0075
  article-title: A multi-objective algorithm for task scheduling and resource allocation in cloud-based disassembly
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2016.09.008
– volume: 50
  start-page: 3770
  issue: 10
  year: 2018
  ident: 10.1016/j.cie.2023.109419_b0175
  article-title: An MCDM-Based Multiobjective General Variable Neighborhood Search Approach for Disassembly Line Balancing Problem
  publication-title: IEEE Transactions on Systems Man Cybernetics-Systems.
– volume: 19
  start-page: 1277
  issue: 2
  year: 2022
  ident: 10.1016/j.cie.2023.109419_b0205
  article-title: Energy-Efficient Robotic Parallel Disassembly Sequence Planning for End-of-Life Products
  publication-title: IEEE Transactions on Automation Science and Engineering.
  doi: 10.1109/TASE.2021.3061506
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0210
  article-title: Energy-time tradeoffs for remanufacturing system scheduling using an invasive weed optimization algorithm
  publication-title: Journal of Intelligent Manufacturing
  doi: 10.1007/978-981-33-4244-6
– volume: 57
  start-page: 94
  year: 2020
  ident: 10.1016/j.cie.2023.109419_b0185
  article-title: A new environment-aware scheduling method for remanufacturing system with non-dedicated reprocessing lines using improved flower pollination algorithm
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2020.08.006
– volume: 184
  start-page: 168
  year: 2017
  ident: 10.1016/j.cie.2023.109419_b0170
  article-title: Simultaneous reassembly and procurement planning in assemble-to-order remanufacturing systems
  publication-title: International Journal of Production Economics.
  doi: 10.1016/j.ijpe.2016.12.009
– volume: 18
  start-page: 467
  issue: 4
  year: 2000
  ident: 10.1016/j.cie.2023.109419_b0050
  article-title: Production planning and control for remanufacturing: Industry practice and research needs
  publication-title: Journal of Operations Management.
  doi: 10.1016/S0272-6963(00)00034-6
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0180
  article-title: A new bifuzzy optimization method for remanufacturing scheduling using extended discrete particle swarm optimization algorithm
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107219
– volume: 15
  start-page: 2456
  issue: 4
  year: 2019
  ident: 10.1016/j.cie.2023.109419_b0195
  article-title: Modeling and Planning for Dual-Objective Selective Disassembly Using AND/OR Graph and Discrete Artificial Bee Colony
  publication-title: IEEE Transactions on Industrial Informatics.
  doi: 10.1109/TII.2018.2884845
– year: 2023
  ident: 10.1016/j.cie.2023.109419_b0215
  article-title: A hybrid genetic algorithm with multiple decoding methods for energy-aware remanufacturing system scheduling problem
  publication-title: Robotics and Computer-Integrated Manufacturing. https://
  doi: 10.1016/j.rcim.2022.102509
– volume: 50
  start-page: 3307
  issue: 7
  year: 2020
  ident: 10.1016/j.cie.2023.109419_b0065
  article-title: Lexicographic Multiobjective Scatter Search for the Optimization of Sequence-Dependent Selective Disassembly Subject to Multiresource Constraints
  publication-title: IEEE Transactions on Cybernetics.
  doi: 10.1109/TCYB.2019.2901834
– volume: 292
  start-page: 397
  issue: 2
  year: 2021
  ident: 10.1016/j.cie.2023.109419_b0005
  article-title: Performance indicators in multiobjective optimization
  publication-title: European Journal of Operational Research.
  doi: 10.1016/j.ejor.2020.11.016
– volume: 39
  start-page: 140
  issue: 1
  year: 2019
  ident: 10.1016/j.cie.2023.109419_b0060
  article-title: A hybrid artificial fish swam algorithm for disassembly sequence planning considering setup time
  publication-title: Assembly Automation.
  doi: 10.1108/AA-12-2017-180
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0130
  article-title: Modelling and solving profit-oriented U-shaped partial disassembly line balancing problem
  publication-title: Expert Systems with Applications
– volume: 63
  start-page: 143
  year: 2022
  ident: 10.1016/j.cie.2023.109419_b0100
  article-title: Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services
  publication-title: Journal of Manufacturing Systems.
  doi: 10.1016/j.jmsy.2022.03.008
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0035
  article-title: Stochastic multi-objective integrated disassembly-reprocessing-reassembly scheduling via fruit fly optimization algorithm
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.123364
– volume: 60
  start-page: 4049
  issue: 13
  year: 2022
  ident: 10.1016/j.cie.2023.109419_b0150
  article-title: Deep reinforcement learning for dynamic scheduling of a flexible job shop
  publication-title: International Journal of Production Research.
  doi: 10.1080/00207543.2022.2058432
– volume: 60
  start-page: 2884
  issue: 9
  year: 2021
  ident: 10.1016/j.cie.2023.109419_b0055
  article-title: Multi-objective optimisation of stochastic hybrid production line balancing including assembly and disassembly tasks
  publication-title: International Journal of Production Research.
  doi: 10.1080/00207543.2021.1905902
– volume: 32
  start-page: 230
  issue: 2
  year: 2006
  ident: 10.1016/j.cie.2023.109419_b0015
  article-title: Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
  publication-title: Computers & Geosciences.
  doi: 10.1016/j.cageo.2005.06.008
– volume: 234
  start-page: 767
  year: 2019
  ident: 10.1016/j.cie.2023.109419_b0105
  article-title: Makerchain: A blockchain with chemical signature for self-organizing process in social manufacturing
  publication-title: Journal of Cleaner Production.
  doi: 10.1016/j.jclepro.2019.06.265
– volume: 14
  start-page: 474
  issue: 4
  year: 2019
  ident: 10.1016/j.cie.2023.109419_b0255
  article-title: Energy-aware fuzzy job-shop scheduling for engine remanufacturing at the multi-machine level
  publication-title: Frontiers of Mechanical Engineering.
  doi: 10.1007/s11465-019-0560-z
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0220
  article-title: Modeling and scheduling for remanufacturing systems with disassembly, reprocessing, and reassembly considering total energy consumption
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-021-17292-x
– year: 2019
  ident: 10.1016/j.cie.2023.109419_b0080
  article-title: A review of emerging industry 4.0 technologies in remanufacturing
  publication-title: Journal of Cleaner Production.
  doi: 10.1016/j.jclepro.2019.117805
– year: 2022
  ident: 10.1016/j.cie.2023.109419_b0155
  article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop
  publication-title: Expert Systems with Applications
– volume: 50
  start-page: 965
  issue: 6
  year: 2017
  ident: 10.1016/j.cie.2023.109419_b0040
  article-title: Discrete harmony search algorithm for scheduling and rescheduling the reprocessing problems in remanufacturing: A case study
  publication-title: Engineering Optimization.
  doi: 10.1080/0305215X.2017.1391240
– volume: 148
  start-page: 624
  year: 2017
  ident: 10.1016/j.cie.2023.109419_b0045
  article-title: Integrated lot sizing and energy-efficient job shop scheduling problem in manufacturing/remanufacturing systems
  publication-title: Journal of Cleaner Production.
  doi: 10.1016/j.jclepro.2017.01.166
– volume: 16
  start-page: 2063
  issue: 4
  year: 2019
  ident: 10.1016/j.cie.2023.109419_b0125
  article-title: An integrated approach for remanufacturing job shop scheduling with routing alternatives
  publication-title: Mathematical Biosciences and Engineering.
  doi: 10.3934/mbe.2019101
– volume: 169
  year: 2022
  ident: 10.1016/j.cie.2023.109419_b0030
  article-title: Green scheduling of distributed two-stage reentrant hybrid flow shop considering distributed energy resources and energy storage system
  publication-title: Computers & Industrial Engineering.
  doi: 10.1016/j.cie.2022.108146
– volume: 1–20
  year: 2022
  ident: 10.1016/j.cie.2023.109419_b0115
  article-title: Blockchained smart contract pyramid-driven multi-agent autonomous process control for resilient individualised manufacturing towards Industry 5.0
  publication-title: International Journal of Production Research.
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0160
  article-title: Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2021.107489
– volume: 49
  start-page: 1903
  issue: 5
  year: 2019
  ident: 10.1016/j.cie.2023.109419_b0010
  article-title: A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm
  publication-title: Applied Intelligence.
  doi: 10.1007/s10489-018-1343-7
– year: 2021
  ident: 10.1016/j.cie.2023.109419_b0250
  article-title: Remanufacturability evaluation of end-of-life products considering technology, economy and environment: A review
  publication-title: Science of The Total Environment
– volume: 269
  start-page: 244
  issue: 1
  year: 2018
  ident: 10.1016/j.cie.2023.109419_b0140
  article-title: Capacitated disassembly scheduling under stochastic yield and demand
  publication-title: European Journal of Operational Research.
  doi: 10.1016/j.ejor.2017.08.032
SSID ssj0004591
Score 2.4600954
Snippet •Extend the existing remanufacturing scheduling problem with the concepts of component commonality.•Develop an IMOGA with several approaches and heuristic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109419
SubjectTerms Component commonality
Energy consumption
Improved multi-objective genetic algorithm
Remanufacturing system
Scheduling
Title Integrated scheduling for remanufacturing system considering component commonality using improved multi-objective genetic algorithm
URI https://dx.doi.org/10.1016/j.cie.2023.109419
Volume 182
WOSCitedRecordID wos001042629000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004591
  issn: 0360-8352
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcChQQ5aU9cAJt5ccm9h4rKKKAKiSKiLhY9nrcOkqcKImr3vsn-LnMvrwmKgiQkCXL2Xhty_N5dnZ25htCXuBMJyxxYxAmMeOSj1mOMGBFLMoxRGU4Ak2Z_zE5OUknE_FpMPjucmEuZknTpJeXYvlfRY1tKGyVOvsX4u4uig14jELHPYod938k-GNHAFG-wpkrjiQzFyy5gnnetCqVweQmGhZnFXiua3ba9NvlolHxAXg0d1Z6qx0KtfY_4GV1ECJbFFOjLFUVZtC8r7OzxarenM_7Fq8rG7HWIKt9pRDwTIhdEFBr1oHaDrHfFq1tqcCf96Y1SyX1We4bv1rP94e8XrZ9Z0YUd6F01sPmsmx8SJPJ7AqYshTNmGUUdZoIFowMaa3X5NG1o4JxUEwPUFseqLsqDi1uNfXPZNuf1b20UaqYyHg8vkF2omQk0iHZOTw-mrzvMdGbaozu2dyKuY4d3LrR9TZPz445vUt27QSEHhrg3CMDaPbIHTsZoVbVr_fI7R5T5X1y5VFFPaoooopuoYoaVNEeqmiHKtpDFdWoog5VdAtV1KKKdqh6QL68PTp9_Y7Z-h1MRiLZsBgCNYHjFRcqHHRUxPjp80JUsspjgKCoUkgq3ESUBBWPS472KeCfAl9qGMr4IRk2-HSPCE2LQqQpl8Ah52kJ6qcco9HApcARCfZJ4N5wJi25vaqxMstcFOMU2yFTQsmMUPbJy67L0jC7_O5k7sSWWdPUmJwZYuzX3R7_W7cn5Jb_OJ6S4WbVwjNyU15s6vXquUXiD-bIuzM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+scheduling+for+remanufacturing+system+considering+component+commonality+using+improved+multi-objective+genetic+algorithm&rft.jtitle=Computers+%26+industrial+engineering&rft.au=Guo%2C+Jun&rft.au=Zou%2C+Junfeng&rft.au=Du%2C+Baigang&rft.au=Wang%2C+Kaipu&rft.date=2023-08-01&rft.pub=Elsevier+Ltd&rft.issn=0360-8352&rft.eissn=1879-0550&rft.volume=182&rft_id=info:doi/10.1016%2Fj.cie.2023.109419&rft.externalDocID=S0360835223004436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-8352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-8352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-8352&client=summon