An iterative adaptive dynamic programming algorithm for optimal control of unknown discrete-time nonlinear systems with constrained inputs

In this paper, the adaptive dynamic programming (ADP) approach is employed for designing an optimal controller of unknown discrete-time nonlinear systems with control constraints. A neural network is constructed for identifying the unknown dynamical system with stability proof. Then, the iterative A...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Information sciences Ročník 220; s. 331 - 342
Hlavní autoři: Liu, Derong, Wang, Ding, Yang, Xiong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Inc 20.01.2013
Témata:
ISSN:0020-0255, 1872-6291
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, the adaptive dynamic programming (ADP) approach is employed for designing an optimal controller of unknown discrete-time nonlinear systems with control constraints. A neural network is constructed for identifying the unknown dynamical system with stability proof. Then, the iterative ADP algorithm is developed to solve the optimal control problem with convergence analysis. Two other neural networks are introduced for approximating the cost function and its derivatives and the control law, under the framework of globalized dual heuristic programming technique. Furthermore, two simulation examples are included to verify the theoretical results.
ISSN:0020-0255
1872-6291
DOI:10.1016/j.ins.2012.07.006