A Novel Compressive Sensing Algorithm for SAR Imaging
A novel compressive sensing (CS) algorithm for synthetic aperture radar (SAR) imaging is proposed which is called as the two-dimensional double CS algorithm (2-D-DCSA). We first derive the imaging operator for SAR, which is named as the chirp-scaling operator (CSO), from the chirp-scaling algorithm...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing Jg. 7; H. 2; S. 708 - 720 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.02.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1939-1404, 2151-1535 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | A novel compressive sensing (CS) algorithm for synthetic aperture radar (SAR) imaging is proposed which is called as the two-dimensional double CS algorithm (2-D-DCSA). We first derive the imaging operator for SAR, which is named as the chirp-scaling operator (CSO), from the chirp-scaling algorithm (CSA), then we show its inverse is a linear map, which transforms the SAR image to the received baseband radar signal. We show that the SAR image can be reconstructed simultaneously in the range and azimuth directions from a small number of the raw data. The proposed algorithm can handle large-scale data because both the CSO and its inverse allow fast matrix-vector multiplications. Both the simulated and real data are processed to test the algorithm and the results show that the 2-D-DCSA can be applied to reconstructing the SAR images effectively with much less data than regularly required. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1939-1404 2151-1535 |
| DOI: | 10.1109/JSTARS.2013.2291578 |