Variations of property (A) constants and Lebesgue-type inequalities for the weak thresholding greedy algorithms

Albiac and Wojtaszczyk introduced property (A) to characterize 1-greedy bases. Later, Dilworth et al. generalized the concept to C-Property (A), where the case C=1 gives property (A). They (among other results) characterized greedy bases by unconditionality and C-property (A). In this paper, we exte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory Jg. 285; S. 105831
1. Verfasser: Chu, Hùng Việt
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.01.2023
Schlagworte:
ISSN:0021-9045, 1096-0430
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Albiac and Wojtaszczyk introduced property (A) to characterize 1-greedy bases. Later, Dilworth et al. generalized the concept to C-Property (A), where the case C=1 gives property (A). They (among other results) characterized greedy bases by unconditionality and C-property (A). In this paper, we extend the definition of the so-called A-property constant to (A, τ)-property constants and use the extension to obtain new estimates for various Lebesgue parameters. Furthermore, we study the relation among (A, τ)-property constants and other well-known constants when τ varies.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2022.105831