Variations of property (A) constants and Lebesgue-type inequalities for the weak thresholding greedy algorithms
Albiac and Wojtaszczyk introduced property (A) to characterize 1-greedy bases. Later, Dilworth et al. generalized the concept to C-Property (A), where the case C=1 gives property (A). They (among other results) characterized greedy bases by unconditionality and C-property (A). In this paper, we exte...
Uloženo v:
| Vydáno v: | Journal of approximation theory Ročník 285; s. 105831 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.01.2023
|
| Témata: | |
| ISSN: | 0021-9045, 1096-0430 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Albiac and Wojtaszczyk introduced property (A) to characterize 1-greedy bases. Later, Dilworth et al. generalized the concept to C-Property (A), where the case C=1 gives property (A). They (among other results) characterized greedy bases by unconditionality and C-property (A). In this paper, we extend the definition of the so-called A-property constant to (A, τ)-property constants and use the extension to obtain new estimates for various Lebesgue parameters. Furthermore, we study the relation among (A, τ)-property constants and other well-known constants when τ varies. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1016/j.jat.2022.105831 |