Cool-lex order and k-ary Catalan structures

For any given k, the sequence of k-ary Catalan numbers, Ct,k=1kt+1(ktt), enumerates a number of combinatorial objects, including k-ary Dyck words of length n=kt and k-ary trees with t internal nodes. We show that these objects can be efficiently ordered using the same variation of lexicographic orde...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 16; s. 287 - 307
Hlavní autori: Durocher, Stephane, Li, Pak Ching, Mondal, Debajyoti, Ruskey, Frank, Williams, Aaron
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.10.2012
Predmet:
ISSN:1570-8667, 1570-8675
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For any given k, the sequence of k-ary Catalan numbers, Ct,k=1kt+1(ktt), enumerates a number of combinatorial objects, including k-ary Dyck words of length n=kt and k-ary trees with t internal nodes. We show that these objects can be efficiently ordered using the same variation of lexicographic order known as cool-lex order. In particular, we provide loopless algorithms that generate each successive object in O(1) time. The algorithms are also efficient in terms of memory, with the k-ary Dyck word algorithm using O(1) additional index variables, and the k-ary tree algorithm using O(t) additional pointers and index variables. We also show how to efficiently rank and unrank k-ary Dyck words in cool-lex order using O(kt) arithmetic operations, subject to an initial precomputation. Our results are based on the cool-lex successor rule for sets of binary strings that are bubble languages. However, we must complement and reverse 1/k-ary Dyck words to obtain the stated efficiency.
ISSN:1570-8667
1570-8675
DOI:10.1016/j.jda.2012.04.015