An exact exponential-time algorithm for the Directed Maximum Leaf Spanning Tree problem

Given a directed graph G=(V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree with as many leaves as possible. By designing a branching algorithm analyzed with Measure&Conquer, we show that the problem can be solved in time O⁎(1.9044n) using polynomial...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of discrete algorithms (Amsterdam, Netherlands) Ročník 15; s. 43 - 55
Hlavní autoři: Binkele-Raible, Daniel, Fernau, Henning
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.08.2012
Témata:
ISSN:1570-8667, 1570-8675
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Given a directed graph G=(V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree with as many leaves as possible. By designing a branching algorithm analyzed with Measure&Conquer, we show that the problem can be solved in time O⁎(1.9044n) using polynomial space. Allowing exponential space, this run time upper bound can be lowered to O⁎(1.8139n). We also provide an example showing a lower-bound for the running time of our algorithm.
ISSN:1570-8667
1570-8675
DOI:10.1016/j.jda.2012.03.006