A PTAS for the cardinality constrained covering with unit balls
In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Dev...
Uložené v:
| Vydané v: | Theoretical computer science Ročník 527; s. 50 - 60 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
27.03.2014
|
| Predmet: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Developing a constant-factor approximation algorithm for this problem is an old open problem. By proving a structural property in the problem and applying the shifting strategy and dynamic programming, we derive the first (1+ε)d-approximation nO(1/εd)-time algorithm for this problem when d is a fixed constant. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2014.01.026 |