A PTAS for the cardinality constrained covering with unit balls
In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Dev...
Gespeichert in:
| Veröffentlicht in: | Theoretical computer science Jg. 527; S. 50 - 60 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
27.03.2014
|
| Schlagworte: | |
| ISSN: | 0304-3975, 1879-2294 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper, we address the cardinality constrained covering with unit balls problem: given a positive integer L and a set of n points in Rd, partition them into a minimum number of parts such that each part contains at most L points and it can be covered by a unit ball of the given ℓp metric. Developing a constant-factor approximation algorithm for this problem is an old open problem. By proving a structural property in the problem and applying the shifting strategy and dynamic programming, we derive the first (1+ε)d-approximation nO(1/εd)-time algorithm for this problem when d is a fixed constant. |
|---|---|
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2014.01.026 |