Geometric series of positive linear operators and the inverse Voronovskaya theorem on a compact interval
We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of admissible operators. We obtain an inverse Voronovskaya theorem and we apply our results to the Bernstein operators and a class of Bernstein–Du...
Uloženo v:
| Vydáno v: | Journal of approximation theory Ročník 184; s. 163 - 175 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Inc
01.08.2014
|
| Témata: | |
| ISSN: | 0021-9045, 1096-0430 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of admissible operators. We obtain an inverse Voronovskaya theorem and we apply our results to the Bernstein operators and a class of Bernstein–Durrmeyer type operators. |
|---|---|
| ISSN: | 0021-9045 1096-0430 |
| DOI: | 10.1016/j.jat.2014.05.011 |