Geometric series of positive linear operators and the inverse Voronovskaya theorem on a compact interval

We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of admissible operators. We obtain an inverse Voronovskaya theorem and we apply our results to the Bernstein operators and a class of Bernstein–Du...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory Jg. 184; S. 163 - 175
Hauptverfasser: Abel, Ulrich, Ivan, Mircea, Păltănea, Radu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Inc 01.08.2014
Schlagworte:
ISSN:0021-9045, 1096-0430
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We define the associated geometric series for a large class of positive linear operators and study the convergence of the series in the case of sequences of admissible operators. We obtain an inverse Voronovskaya theorem and we apply our results to the Bernstein operators and a class of Bernstein–Durrmeyer type operators.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2014.05.011